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Stable all-optical limiting in nonlinear periodic
structures. I. Analysis
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We consider propagation of coherent light through a nonlinear periodic optical structure consisting of two al-
ternating layers with different linear and nonlinear refractive indices. A coupled-mode system is derived from
the Maxwell equations and analyzed for the stationary-transmission regimes and linear time-dependent dy-
namics. We find the domain for existence of true all-optical limiting when the input–output transmission
characteristic is monotonic and clamped below a limiting value for output intensity. True all-optical limiting
can be managed by compensating the Kerr nonlinearities in the alternating layers, when the net-average non-
linearity is much smaller than the nonlinearity variance. The periodic optical structures can be used as uni-
form switches between lower-transmissive and higher-transmissive states if the structures are sufficiently
long and out-of-phase, i.e., when the linear grating compensates the nonlinearity variations at each optical
layer. We prove analytically that true all-optical limiting for zero net-average nonlinearity is asymptotically
stable in time-dependent dynamics. We also show that weakly unbalanced out-of-phase gratings with small
net-average nonlinearity exhibit local multistability, whereas strongly unbalanced gratings with large net-
average nonlinearity display global multistability. © 2002 Optical Society of America
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1. INTRODUCTION
Fiber-optic communications networks operate at informa-
tion rates unachievable by electronic signal generation
alone. Optical components are used to multiplex many
independently modulated wavelength channels onto a
single physical medium. In addition, all-optical multi-
plexing and demultiplexing have been demonstrated
purely in the time domain: in these systems the signal-
ing rate on a single channel vastly exceeds rates possible
through direct electronic coding.

In today’s fiber-optic networks the use of all-optical pro-
cessing (the regeneration and routing of information-
bearing optical signals) may yield a dramatic savings in
power and cost. In future optical time-division multi-
plexed systems it will be the only option for the manage-
ment of bursts of data. Optical signal-processing ele-
ments will exploit the speed and parallelism inherent to
optics and accommodate future bandwidth growth.1–3

Passive optical limiters represent one important family
of optical signal-processing elements. Existing mecha-
nisms include total internal reflection,4 two-photon ab-
sorption and photorefractive beam fanning,4 self-
focusing,5,6 reverse saturable absorption,7 and soliton
trapping in nonlinear optical fiber.8–10 In contrast with
applications in information storage, optical signal-
processing operations require devices that are uniformly
stable for all pertinent incident intensities. Passive op-
tical limiters do support under different technological
constraints a uniformly stable operating regime, which
we term here true all-optical limiting.
0740-3224/2002/010043-11$15.00 ©
We have recently proposed and elaborated11 new pas-
sive optical limiters based on nonlinear reflection of light
instead of absorption. We have shown that, in combina-
tion, these devices can provide a full set of logic functions.
The nonlinear reflection-based limiters are composed of
multilayer structures in which the linear and nonlinear
refractive indices vary periodically. We have shown that,
if fabricated with available nonlinear materials, these de-
vices may exhibit a dramatically reduced intensity
threshold for the onset of true all-optical limiting. They
may be made strongly wavelength selective in order to act
on a single channel in a multiwavelength system.

Periodically nonlinear optical materials generally ex-
hibit the widely studied phenomena of bistability and
multistability. As a result, these materials do not lead to
memoryless (hysteresis-free) operation.12–16 They do not
exhibit saturation of the transmitted intensity to a limit-
ing value and may undergo chaotic behavior.17 In con-
trast, in real-time signal processing, bit-level signal-
regeneration operations such as edge sharpening,
retiming, and signal-to-noise enhancement should be in-
dependent of the past state of the channel.

The center frequency of the stopband must be largely
independent of intensity in order to obtain stability in a
nonlinear periodic device. In our recent work11,18 we con-
sidered refraction of incoherent light in optical gratings of
alternating layers with Kerr coefficients of opposite signs.
We have shown that multistability disappears if the Kerr
nonlinearities are compensated with zero or a small aver-
age over the many-layered structure but possess high lo-
2002 Optical Society of America
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cal nonlinearity inside each individual layer. We term
this method of compensating Kerr nonlinearities nonlin-
earity management of the refractive optical gratings.

Nonlinearity management is widely employed in the
fabrication of structures based on second-harmonic gen-
eration to achieve quasi phase matching of the nonlinear
interactions.19–21 However, such systems are used for
sending short-pulse nonresonant signals over a long
propagation scale. In this aspect our work is distinct be-
cause we consider optical devices based on the Bragg reso-
nance between the wavelength of light and the period of
the spatially varying nonlinearity. It is these short-scale
resonant devices that are of use in memory applications of
bistable and multistable regimes when nonlinearity man-
agement is neglected.12,22

We have recently analyzed and quantified the response
of a nonlinear periodic optical structure illuminated by co-
herent light waves. In particular, we focus on the condi-
tions under which the nonlinearity-managed grating
works in the operating regime of true all-optical limiting.
In the present paper we develop, for the first time to our
knowledge, a complete analytical theory of true all-optical
limiting in the nonlinear optical gratings.

Starting from the Maxwell equations, we derive in Sec-
tion 2 the coupled-mode equations for coherent light
waves propagating through the nonlinear distributed-
feedback structure. The domain for existence of a true
all-optical limiting regime is found in Section 3. A linear
time-evolution analysis is developed in Section 4 wherein
we present the analytical proof of stability of the true all-
optical limiting.

2. THEORETICAL MODEL
We consider the periodic nonlinear structure illustrated
in Fig. 1. The finite-length optical device consists of N
alternating layers with different linear refractive indices
and different Kerr nonlinearities. In the well-known av-
eraged approximation23 the refractive index of an optical
material is n(z, uEu2) 5 n0(z) 1 n2(z)uEu2 1 O(uEu4),
where n0(z) and n2(z) are linear and Kerr nonlinear in-
dices, respectively, and z is the direction along the struc-
ture. The indices n0(z) and n2(z) are constant within
each layer as in Fig. 1.

Fig. 1. Periodic nonlinear structure consisting of alternating
layers with different linear refractive indices and different Kerr
nonlinearities.
Depending on the material and the optical wavelength,
the refractive index may increase or decrease with the in-
tensity, i.e., the component n2(z) may be either positive or
negative. We show in Sections 3 and 4 that the periodic
nonlinear grating provides true all-optical limiting if the
net-average nonlinear index nnl 5 ^n2(z)& is much
smaller than the variation in the nonlinear index between
individual layers (Dnnl)

2 5 ^@n2(z) 2 nnl#
2&. In order to

prove this main result we derive here a set of coupled-
mode equations for coherent wave propagation in the pe-
riodic optical structure.

We study the nonstationary Maxwell equations aver-
aged across a transverse cross section (x, y). We assume
linear polarization of coherent light and no two-photon
absorption effects:

]2E

]z2 2
n2~z, uEu2!

c2

]2E

]t2 5 0, (1)

where E(z, t) is a scalar electric field and c 5 (e0m0)21/2

is the speed of light. Light whose wavelength lies within
the linear forbidden band is incident upon the medium.
The two counterpropagating waves are then strongly
coupled, and the intensity-dependent refraction of the op-
tical material supports resulting transmission of light
through the periodic structure (Fig. 1). For analysis
the Maxwell equations can be simplified when the varia-
tions of the refractive index due to nonlinearity and linear
grating are much smaller than the average index
n ln 5 ^n0(z)&. If the small spatial variations of indices
n0(z) and n2(z) have the same spatial symmetry centered
at z 5 0, then n(z, uEu2) can be expanded into the Fourier
series,

n~z, uEu2! 5 n ln 1 2n0k cos kz 1 nnluEu2

1 2n2kuEu2 cos kz, (2)

where un0ku, unnliEu2, un2kiEu2 ! un lnu, k 5 2p/L is the
wave number inside the material, and L is the period of
the structure so that the total length is l 5 NL. The
Fourier series for E(z, t) in the model (1) and (2) is then
given in the same approximation as

E~z, t ! 5 A1~z, t !exp@i~k0z 2 v0t !#

1 A2~z, t !exp@2i~k0z 1 v0t !#

1 higher-order terms, (3)

where v0 5 ck0 /un lnu is the light frequency and k0
5 2pun lnu/l is the light wave number. The resonance in
the first gap occurs for k 5 2k0 , i.e., when the optical
wavelength l matches the period of the structure, l
5 2un lnuL. Near the resonance the amplitudes A6

5 A6(z, t) satisfy the coupled-mode system easily de-
rived from Eqs. (1)–(3) in the assumption u]A6 /]zu,
u]A6 /]tu ! uA6u,

iS ]A1

]Z
1

]A1

]T D 1 n0kA2 1 nnl~ uA1u2 1 2uA2u2!A1

1 n2k@~2uA1u2 1 uA2u2!A2 1 A1
2 Ā2# 5 0, (4)
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2iS ]A2

]Z
2

]A2

]T D 1 n0kA1 1 nnl~2uA1u2 1 uA2u2!A2

1 n2k@~ uA1u2 1 2uA2u2!A1 1 A2
2 Ā1# 5 0, (5)

where Z 5 v0z/c and T 5 v0t/un lnu are the normalized
spatial coordinate and time, respectively. For the two-
layer structure shown in Fig. 1 the Fourier coefficients of
expansion (2) can be evaluated from the constant linear
and nonlinear indices in each layer,

n ln 5
n01 1 n02

2
, nnl 5

nnl1 1 nnl2

2
,

n0k 5
n01 2 n02

p
, n2k 5

nnl1 2 nnl2

p
. (6)

Here and in the rest of the paper, we use normalized in-
tensity in units reciprocal to the units of nnl .

Special cases of the coupled system (4) and (5) have
been already studied for the phenomena of optical bista-
bility and gap solutions.12,17 For n2k 5 0 (no manage-
ment of Kerr nonlinearities) this system is readily derived
for linear Bragg gratings.22 For n2k Þ 0 but
A6 5 A6(z) (stationary regime) the same model can be
identified from Eqs. (10a) and 10(b) of He and Cada16 who
studied semiconductor structures and GaAs–AlAs super-
lattices.

In the present work we are particularly interested in
the regime, when nnl 5 0 but n2k Þ 0. In this case,
coupled-mode theory prescribes a new phenomenon:
true all-optical limiting. Since many results are avail-
able for other cases but the regime of true all-optical lim-
iting was overlooked in previous works, we undertake a
special consideration of this regime. In this paper we
analyze two major problems: (i) domain for existence of
the stationary limiting regime and (ii) the linear stability
problem for the limiting transmission. We prove that the
true all-optical limiting is indeed marginally stable
within the model (4) and (5) for unnlu ! un2ku. The linear
index mismatch n0k does not change this conclusion for
large intensities of the incident wave, but it does modify
the value for limiting intensity and also the shape of the
input–output transmission characteristic. A sufficiently
large mismatch n0k or more layers N for out-of-phase
gratings lead to local multistability for lower and higher
intensities. We determine the threshold between locally
multistable and uniformly stable regimes as well as the
threshold between true all-optical limiting and global
multistability of the nonlinear grating.

3. DOMAIN FOR EXISTENCE OF THE
LIMITING REGIME
Here we consider the stationary regime for the transmis-
sion of coherent light through the periodic nonlinear
structure; i.e., we set ]A6 /]T 5 0. The standard scat-
tering problem is imposed for the amplitudes A6(Z) by
the boundary conditions at the left and right ends of the
structure, Z 5 0 and Z 5 L 5 v0l/c (see Fig. 1), where
uA1~0 !u2 5 I in , uA2~0 !u2 5 Iref ,

uA1~L !u2 5 Iout, uA2~L !u2 5 0. (7)

Here I in , Iref , and Iout are intensities of incident, re-
flected, and transmitted waves. The stationary equa-
tions (4) and (5) preserve the intensity flow through the
structure,

uA1~Z !u2 2 uA2~Z !u2 5 I in 2 Iref 5 Iout . (8)

The stationary equations can be written in the Hamil-
tonian form,

]A6

]Z
5 6i

]H

]Ā6

, (9)

where the conserved (real-valued) Hamiltonian is

H 5 @n0k 1 n2k~ uA1u2 1 uA2u2!#~Ā1A2 1 A1Ā2!

1
1

2
nnl~ uA1u4 1 4uA1u2uA2u2 1 uA2u4!. (10)

Since two conserved quantities (8) and (10) exist for two
complex equations for A1(Z) and A2(Z), the system (9) is
integrable. We use flow equation (8) to parameterize the
solution in the polar form,

A1~Z ! 5 AIout 1 Q exp@i~F 2 C!#,

A2~Z ! 5 AQ exp~iF! (11)

where Q(Z) and F(Z) are the intensity and the complex
phase of the reflected wave and C(Z) is the phase mis-
match between the incident and reflected waves. The
system (4) and (5) can be reduced in the form (11) to the
coupled system for Q(Z) and C(Z),

dQ

dZ
5 22AQ~Iout 1 Q ! sin C@n0k 1 n2k~Iout 1 2Q !#,

(12)

dC

dZ
5 23nnl~Iout 1 2Q ! 2

cos C

AQ~Iout 1 Q !

3 @n0k~Iout 1 2Q ! 1 n2k~Iout
2 1 8IoutQ 1 8Q2!#.

(13)

It follows from Eqs. (10) and (11) that, in the coupled sys-
tem, the quantity

H 5 2AQ~Iout 1 Q !cos C@n0k 1 n2k~Iout 1 2Q !#

1 3nnlQ~Iout 1 Q ! 1
1

2
nnlIout

2 (14)

is conserved. The boundary conditions (7) are satisfied
for H 5

1
2 nnlIout

2 , when Q(Z) and C(Z) are connected by
the relation
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cos C 5
23nnlAQ~Iout 1 Q !

2@n0k 1 n2k~Iout 1 2Q !#
. (15)

The coupled system (12) and (13) can be reduced with the
help of Eq. (15) to a single equation either for Q(Z) or for
C(Z) [see Eq. (28) below]. However, this reduction
depends on the parameters nnl , n0k , n2k , and Iout of
the model. Here we consider two different cases: (i)
nnl 5 0 and (ii) nnl Þ 0. In the first case we find explicit
elementary solutions of the system that enable us to clas-
sify all stationary-transmission regimes for the periodic
structure with balanced (zero-average) nonlinearity man-
agement. In the other case the exact solutions are given
in terms of implicit elliptic integrals. Instead of full
analysis of the case (ii) we study only new features in the
stationary transmission through the periodic structure
compared with the case (i).

A. Balanced (Zero-Average) Nonlinearity Management:
nnlÄ0
When the periodic structure consists of alternating layers
with zero net-average Kerr nonlinearity, the coupled-
mode equations (12) and (13) become simple and analyti-
cally tractable. Since true all-optical limiting is best
achieved and performed in this regime, we develop a com-
plete analysis of the system (12) and (13) in this case.

First, we need to satisfy the boundary condition Q(L)
5 0 and Q(Z) > 0 for the intensity of the reflected wave
at the right end of the structure [i.e., the slope of Q(Z) is
negative near Z ' L]. Matching Eqs. (12) and (15), we
conclude that the phase factor C(Z) is constant in the
case nnl 5 0 and has the following boundary conditions:

C~Z ! 5
p

2
for n0k 1 n2kIout > 0, (16)

C~Z ! 5 2
p

2
for n0k 1 n2kIout , 0. (17)

We may assume without loss of generality that the first
layer is focusing and the second one is defocusing so that
n2k . 0 [see Eq. (6)]. Under this convenient agreement
we interpret the negative values of n0k as out-of-phase
matching between linear and Kerr nonlinear refractive
indices and the positive values of n0k as in-phase match-
ing of the indices.

We consider first the case when un0ku < n2kIout . Direct
integration of Eq. (12) for C(Z) 5 p/2 produces the ex-
plicit solutions

Q~Z ! 5
Iout~n0k 1 n2k Iout!sin2 u

n2k Iout cos 2u 2 n0k
, (18)

where u 5 An2k
2 Iout

2 2 n0k
2 (L 2 Z). It is clear that the

solution Q(Z) is monotonically decreasing between
Z 5 0 and Z 5 L and is defined for Iout < I lim , where I lim
solves the transcendent equation

21 < cos~2An2k
2 I lim

2 2 n0k
2 L ! 5

n0k

n2k I lim
< 1. (19)
Parameter I lim represents the limiting value for the trans-
mitted intensity that characterizes the output of the non-
linear periodic structure. Typical transmission (input–
output) curves Iout 5 Iout(I in) are displayed in Fig. 2 for
n2k 5 1 and three different values of n0k . The transmit-
ted intensity Iout is a one-to-one function of the incident
intensity I in and is bounded by its limiting value I lim
(shown in Fig. 2 by horizontal lines).

Using Eq. (19), we can readily consider the limit when
the linear grating is weak compared with the nonlinearity
management, i.e., un0ku ! n2k I lim . In this case the lim-
iting intensity can be approximated explicitly as

I lim 5
p

4n2k L F1 2
8n0k L

p2 1 O~n0k!2G . (20)

It is clear from Fig. 2 that the limiting regime with I lim
' 0.01 and n2k 5 1 is supported by a nonlinear change
in the refractive index higher than 1%. This is an ex-
tremely high estimate for Kerr nonlinearities, and it can-
not be achieved in any realistic optical materials. How-
ever, as follows from Eq. (20), the limiting intensity is
inversely proportional to the length of optical devices.
Using longer devices would require lower index changes
that are more realistic. Long multiperiodic nonlinear
structures can be fabricated from colloidal crystals; see,
e.g., Ref. 24.

It also follows from Eq. (20) that the limiting value be-
comes smaller for the in-phase gratings, when n0k . 0,
and it grows for the out-of-phase gratings, when
n0k , 0. Therefore no matter how large the mismatch
between linear and nonlinear refractive indices is built,
true all-optical limiting is still achieved for out-of-phase
gratings with sufficiently large input (and output) inten-
sities. We express this property by the estimate on the
limiting intensity,

I lim >
un0ku

n2k
for n0k , 0, nnl 5 0. (21)

Fig. 2. Balanced nonlinearity management with a linear
grating, where nnl 5 0, n2k 5 1. Horizontal lines show the
limiting intensity I lim , and the dashed line displays the regime
of complete transparence: Iout 5 I in . An out-of-phase (n0k
5 20.02) grating increases I lim , whereas an in-phase grating
(n0k 5 0.02) decreases it.
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The other (in-phase) gratings always support true all-
optical limiting with no constraints on the value for the
limiting intensity I lim . This value reduces with larger
mismatch n0k . 0.

We consider now the case when un0ku . n2k Iout . The
exact solution (18) can be generalized to the form

Q~Z ! 5
Iout~n0k 1 n2k Iout!sinh2 f

n0k 2 n2k Iout cosh 2f
, (22)

where f 5 2iu 5 An0k
2 2 n2k

2 Iout
2 (L 2 Z). It may be

verified that this expression does indeed solve Eq. (12) for
C(Z) 5 p/2 when n0k . 0 and for C(Z) 5 2p/2 when
n0k , 0. The behavior of the wave profile Q(Z) across
the structure is now different depending on the sign of
n0k .

In the case when n0k . 0 (in-phase gratings), solution
(22) is nonsingular for Iout < min(Ilim , n0k /n2k). If
I lim . n0k /n2k , the transmission curve Iout 5 Iout(I in)
consists of two pieces that are described by the solutions
(18) for n0k /n2k , Iout , I lim and (22) for Iout , n0k /n2k .
These two solutions match in the limit Iout → n0k /n2k ,
where the formulas (18) and (22) produce a unique result,

Q~Z ! 5
4Ioutn0k

2 ~L 2 Z !2

1 2 4n0k
2 ~L 2 Z !2

as Iout →
n0k

n2k
. 0.

(23)

This expression is nonsingular for n0k < 1/(2L). Other-
wise, i.e., when n0k . 1/(2L), the whole input–output
curve Iout(I in) lies below the value Iout 5 n0k /n2k and is
described solely by Eq. (22). In the latter case shown in
Fig. 2 for n0k 5 0.02, the limiting intensity satisfies the
estimate I lim < n0k /n2k and can be found by solving the
transcendental equation

cosh~2An0k
2 2 n2k

2 I lim
2 L ! 5

n0k

n2k I lim
. 1. (24)

In contrast, in the case n0k , 0 (out-of-phase gratings),
solution (22) is never singular and exists for the whole do-
main 0 < Iout , un0ku/n2k . The transmission curve
Iout(I in) shown in Fig. 2 for n0k 5 20.02 touches the
straight line I in 5 Iout (dotted diagonal line) at the value
Iout 5 un0ku/n2k , where the solution is trivial: Q(Z)
5 0. It implies that the out-of-phase periodic nonlinear
structure is completely transparent for I in 5 un0ku/n2k ,
i.e., the nonlinear index variations are completely com-
pensated by the out-of-phase linear grating. The value
I in 5 Iout 5 un0ku/n2k is a meeting point that matches two
pieces of the curve Iout(I in) that are expressed by the ex-
plicit solutions (18) and (22). Near the meeting point, we
find from Eqs. (18) and (22) an asymptotic solution for
Q(Z) in the limit n0k 1 n2k Iout → 0,

Q~Z ! 5 Iout~n0k 1 n2k Iout!
2~L 2 Z !2. (25)

This asymptotic solution implies that the curve Iout(I in) is
concave-down near Iout 5 un0ku/n2k so that there is an in-
flection point in the interval 0 , Iout , un0ku/n2k (see Fig.
2 for n0k 5 20.02). As a result, the entire dependence
Iout(I in) exhibits the typical S-shaped profile inherent to
bistable transmission regimes.22 Still, the transmitted
intensity Iout is a one-to-one function of I in and is bounded
by its limiting value I lim that satisfies the estimate (21).
Thus bistability is not supported in the limit nnl 5 0 but,
as we show in Subsection 3.B, it can be achieved for the
nonlinear out-of-phase periodic structure with unbal-
anced (nonzero average) nonlinearity management.

The S-shaped input–output transmission characteris-
tics for the out-of-phase gratings enable us to construct a
uniform switching device if the structure is sufficiently
long, i.e., N → `. Indeed, we show in Fig. 3 for
n2k 5 1 and n0k 5 20.02 that the transmission curve
Iout(I in) becomes a simple two-step map between the
lower-transmissive (Iout 5 0) and higher-transmissive
limiting state (Iout 5 I lim 5 un0k u/n2k). By studying the
asymptotic behavior of Eq. (22) in the limit f → `
(N → `), we derive the following asymptotic formula for
intermediate intensities Iout ,

Iout

I lim
5 2

I in

I lim
2 1 for

1

2
I lim < I in < I lim . (26)

Thus switching between the two states occurs when I in
exceeds a threshold given by the 0.5I lim value (see Fig. 3).
This two-step map is supported by the out-of-phase grat-
ings only, i.e., when n0k , 0. For in-phase gratings,
when n0k > 0, the limit N → ` gives a trivial result,

Iout 5 I lim 5
n0k

n2k
for I in . 0.

Provided that the true all-optical limiting is stable for
nnl 5 0 as shown in Section 4, these results imply that
the out-of-phase gratings have sharp features useful in
carrying out functions such as limiting, switching,
and logic. For instance, the out-of-phase grating with
N 5 20 is suitable for optical limiting, and that for
N 5 200 can be used for logic operations (see Fig. 3).

B. Unbalanced (Nonzero-Average) Nonlinearity
Management: nnlÅ0
When nnl Þ 0, the analysis becomes more involved. We
can still use the connecting relation (15) and find the ex-

Fig. 3. Balanced nonlinearity management with an out-of-
phase grating, where nnl 5 0, n0k 5 20.02, and n2k 5 1. The
figure emphasizes the sharpening of the S-shaped curves with an
increase in the number of layers. Each curve has been normal-
ized to its limiting intensity.
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act condition when the limiting behavior is possible, i.e.,
when Q(0) → ` for Iout → I lim , `. Since ucos Cu < 1,
the limiting regime exists when

n2k >
3unnlu

4
. (27)

In the opposite case, i.e., when n2k , 3unnlu/4, no limiting
regime is possible and the system is bistable or
multistable.18,22 Figure 4 shows the dependence Iout(I in)
for n0k 5 0, n2k 5 1, and three values of nnl . The value
nnl 5 1 fits to the domain (27), and therefore the struc-
ture displays the limiting regime. On the other hand,
the values nnl 5 1.4 and nnl 5 2 are outside of the do-
main (27), and the structure displays multistability that
shrinks for strongly unbalanced gratings, i.e., when nnl
grows.

In order to study the new features of the limiting re-
gime for nnl Þ 0, we use the relations (12) and (15) to
close the system for Q(Z):

S dQ

dZ D 2

5 Q~Iout 1 Q !$4@n0k 1 n2k~Iout 1 2Q !#2

2 9nnl
2 Q~Iout 1 Q !%. (28)

Simple analysis of the right-hand side of Eq. (28) shows
that the system is well defined for the limiting solution
when 0 < Q(Z) < ` if

I lim >
4un0ku

A16n2k
2 2 9nnl

2
for n0k , 0. (29)

This constraint improves estimate (21) for nnl Þ 0. Al-
though the explicit solutions of Eq. (28) are given in terms
of elliptic functions,22 we construct solutions of Eq. (28)
numerically and provide the transmission curve Iout(I in)
in Fig. 5 for nnl 5 1, n2k 5 1, and four values of n0k . The
curve clearly undertakes only one essential modification
compared with the case nnl 5 0 (cf. Fig. 2).

Within domain (27) for nnl Þ 0, true all-optical limit-
ing, when Iout(I in) is a one-to-one function clamped below
I lim , is supported by the in-phase and weakly out-of-
phase gratings (see Fig. 5 for n0k 5 20.02, 0, 0.02). In
this uniform regime the distribution of the reflected wave
has a fundamental profile, i.e., it satisfies the following
properties: 0 < Q(Z) , ` and dQ(Z)/dZ < 0, for any
0 , Iout < I lim .

For the sufficiently strong out-of-phase gratings, when
n0k , 0, multistability takes place at low and high inten-
sities below final limiting behavior as Iout → I lim (see Fig.
5 for n0k 5 20.04). The limiting intensity I lim satisfies
the constraint (29). We refer to this case as locally mul-
tistable limiting. It is well known22 that, in contrast to
true all-optical limiting, the locally multistable regime
leads to complicated dynamics and instabilities in nonlin-
ear periodic optical materials.

In order to find the threshold between the true all-
optical limiting and locally multistable limiting
for strongly out-of-phase gratings, we deduce from Eq.
(28) an asymptotic solution for Q(Z) in the limit
n0k 1 n2k Iout → 0,
Q~Z ! 5
4~n0k 1 n2k Iout!

2

9nnl
2 Iout

sin2F3

2
nnl Iout~L 2 Z !G . (30)

This expression reduces to Eq. (25) for nnl 5 0. It follows
from this expression that the profile Q(Z) has the same
fundamental properties as for the in-phase gratings, if

0 . n0k > 2
pn2k

3unnluL
. (31)

Outside of this domain, i.e., for sufficiently strong out-of-
phase mismatch between n0k and n2k or for sufficiently
long periodic structures, the profile Q(Z) becomes a non-
monotonic function: the derivative dQ/dZ has different
signs at 0 < Z < L. Further in the domain, when
n0k < 2 2pn2k/3unnluL, the profile Q(Z) has one or more
nodes at 0 < Z < L. This behavior characterizes local
multistability of the periodic structure,22 i.e., the appear-
ance of other branches of Iout for a given value of the in-
cident intensity I in . Since the asymptotic solution (30) is
valid from both sides of the limit Iout → un0ku/n2k , two

Fig. 4. Unbalanced nonlinearity management with no linear
grating, where n0k 5 0, n2k 5 1. The threshold between the
limiting regime and multistability is nnl 5 1.33. Note that the
multilevel oscillations become tighter for larger nnl .

Fig. 5. Unbalanced nonlinearity management with linear grat-
ing, where nnl 5 1, n2k 5 1. Bistability occurs for n0k
< 2 0.03, so the curve for n0k 5 20.04 shows two local bistabil-
ity cascades.
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Fig. 6. Unbalanced nonlinearity management with an out-of-phase grating, where n0k 5 20.04, nnl 5 1, n2k 5 1 and (a) N 5 20, (b)
N 5 50, (c) N 5 200, and (d) N 5 400. The Iout versus I in curves become multistable as the device gets longer.
cascades of local multistability levels must coexist for
lower and higher intensities I in (see Fig. 5 for
n0k 5 20.04).

The threshold (31) depends on the size of the structure,
i.e., L and N. When the structure becomes longer, a rela-
tively small out-of-phase mismatch n0k leads to multi-
stable behavior and more levels of multistability arise.
This is shown in Fig. 6 for nnl 5 1, n0k 5 20.04,
n2k 5 1, and different values of N. Thus sharp features
of out-of-phase gratings, which could be realized by exact
compensating of the Kerr nonlinearity, are destroyed in
the out-of-phase structure with nonzero average nonlin-
earity (cf. Fig. 3 and Fig. 6).

To summarize, we have found that true all-optical lim-
iting exists within the domains (27) and (31), where the
limiting intensity Iout is estimated for the out-of-phase
gratings in Eq. (29). For sufficiently strong or suffi-
ciently long out-of-phase gratings, when constraint (31) is
violated, the bistable limiting regime exists within do-
main (27) with the estimate on I lim given by Eq. (29). Fi-
nally, when constraint (27) is violated, i.e., for strongly
unbalanced nonlinear gratings, the limiting regime is re-
placed by the multistable transmission regime.

4. LINEAR STABILITY ANALYSIS
Here we analyze the linear stability of stationary regime-
sof light transmission. Linear stability results charac-
terize time-dependent perturbations that develop in the
periodic optical structure over stationary transmission.
The stability results determine whether true all-optical
limiting does indeed survive under real-life disturbances.
If this is the case, then the operating regimes based on
true all-optical limiting can be excited experimentally by
light incident on the structure.

De Sterke showed25 that periodic nonlinear gratings
with no nonlinearity management possess dramatic in-
stabilities for coherent-light transmissions at high inten-
sities. These instabilities are classified into two types.
Type I instability occurs for stationary transmission at in-
termediate intensities where the curve Iout versus I in has
a negative slope. Type I instability results in switching
of the stationary distribution either to lower or to higher
transmissive states (with a smaller or larger value of the
output intensity Iout). The other (type II) instability oc-
curs for high-intensity transmission, i.e., at the upper
branch of the bistable curve Iout(I in). Type II instability
is characterized by the nonzero frequencies of the pertur-
bation evolution, which cause the instability to be oscilla-
tory. This instability is manifested through self-
pulsations of the periodic structure between high-
transmission and low-transmission states.26

We show here for the case nnl 5 0 that the true all-
optical limiting regime exhibits no instabilities of either
type I or II and is asymptotically stable. First, we sim-
plify the coupled-mode equations (4) and (5) by linearizing

FA1

Ā1
G~Z, T ! 5 FA1

Ā1
G~Z ! 1 Fa1

a2
G~Z !exp~lT !, (32)

FA2

Ā2
G~Z, T ! 5 FA2

Ā2
G~Z ! 1 Fb1

b2
G~Z !exp~lT !, (33)

where the perturbations are considered to be small, i.e.,
ua1u, ua2u, ub1u, ub2u ! uA1u, uA2u, and l is the time-
evolution constant. The coupled-mode equations (4) and
(5) reduce with the help of Eqs. (32) and (33) to the linear
eigenvalue problem for the spectrum of l:

Hc 5 lJc, (34)

where c 5 (a1 , b1 , a2 , b2) t is the perturbation vector,
J 5 diag(i, i, 2i, 2i) is a skew-symmetric operator, and H
is the symmetric Dirac-type operator with the given po-
tential
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H 5 2iFs3 0

0 2s3
G d

dZ
2 n0kFs1 0

0 s1
G

2 nnlF 2~ uA1u2 1 uA2u2! 2A1Ā2 A1
2 2A1A2

2Ā1A2 2~ uA1u2 1 uA2u2! 2A1A2 A2
2

2Ā1
2 2Ā1Ā2 2~ uA1u2 1 uA2u2! 2Ā1A2

2Ā1Ā2 Ā2
2 2A1Ā2 2~ uA1u2 1 uA2u2!

G
2 n2kF 2~A1Ā2 1 Ā1A2! 2~ uA1u2 1 uA2u2! 2A1A2 ~A1

2 1 A2
2 !

2~ uA1u2 1 uA2u2! 2~A1Ā2 1 Ā1A2! ~A1
2 1 A2

2 ! 2A1A2

2Ā1Ā2 ~Ā1
2 1 Ā2

2 ! 2~A1Ā2 1 Ā1A2! 2~ uA1u2 1 uA2u2!

~Ā1
2 1 Ā2

2 ! 2Ā1Ā2 2~ uA1u2 1 uA2u2! 2~A1Ā2 1 Ā1A2!

G .
Here s1 and s3 are the Pauli matrices

s1 5 F0 1

1 0G , s3 5 F1 0

0 21G .
The problem (34) is now well defined: provided that a
nonzero perturbation vector c (Z) at a certain value of l
does not modify the intensity of the incident wave, the
time-evolution constant l in Eqs. (32) and (33) prescribes
the dynamics of internal perturbations in the periodic op-
tical structure. If the internal perturbations can grow
with time, i.e., if Re(l) . 0, then the stationary regime is
unstable and will be deformed or destroyed by the grow-
ing perturbations. Mathematically, the problem is to
find solutions of the linear eigenvalue problem (34) that
satisfy the following boundary conditions at the left and
right ends of the structure,

a1~0 ! 5 a2~0 ! 5 b1~L ! 5 b2~L ! 5 0. (35)

Such solutions may exist only for special values of l called
eigenvalues of the discrete spectrum. In the case
nnl 5 0 we find exact solutions of Eq. (34) and show that
there are no nontrivial eigenvalues for Re(l) . 0. Thus
the true all-optical limiting regime is stable for nnl 5 0.

When nnl 5 0, the potentials in the operator H can be
expressed through the exact solutions found in Subsection
3.A. Suppose first that un0ku < n2kIout . In this case,
A1(Z) 5 2i@Iout 1 Q(Z)#1/2 and A2(Z) 5 @Q(Z)#1/2,
where Q(Z) is given by Eq. (18). The linear problem (34)
can then be decomposed for two uncoupled vectors,

c1~Z ! 5 Fa1 1 a2

b1 2 b2
G~Z !, c2~Z ! 5 Fa1 2 a2

b1 1 b2
G~Z !.

(36)

The vectors c6(Z) satisfy two uncoupled linear problems
following from Eq. (34),

@H1 6 n2kH2#c6 5 ilc6 , (37)

where H1 and H2 are respectively symmetric and anti-
symmetric operators,

H1 5 2is3

d

dZ
2 s1@n0k 1 2n2k~Iout 1 2Q !#,

H2 5 2is3AQ~Iout 1 Q ! 1 s1s3Iout .
It follows from Eqs. (18) and (22) that the potential in Eq.
(37) has the symmetry Q(Z) 5 Q(2L 2 Z). Using this
symmetry, we can relate the vectors c1(Z) and c2(Z):

c21~Z ! 5 c12~2L 2 Z !, c22~Z ! 5 c11~2L 2 Z !. (38)

Thus it is sufficient to study problem (37) for the vector
c1(Z) only. We set the variables

u 5 An2k
2 Iout

2 2 n0k
2 ~L 2 Z !, l 5 An2k

2 Iout
2 2 n0k

2 g,
(39)

where g is a new time-evolution constant. The vector
c1(Z) in problem (37) can be then transformed by the
substitution

c11~Z! 5 2i@~n2kIout 2 n0k!~n2kIout cos2u 2 n0k!#1/2w1~u!,

(40)

c12~Z ! 5 @~n2k Iout 1 n0k!~n2k Iout cos 2u 2 n0k!#1/2w2~u!.
(41)

As a result, linear problem (37) is rewritten in the final
form

dw1

du
2 F1 1

2~n0k 1 n2kIout!

n2kIout cos 2u 2 n0k
Gw2 5 gw1 , (42)

2
dw2

du
2 F1 1

2~n0k 2 n2kIout!

n2kIout cos 2u 2 n0k
Gw1 5 gw2 . (43)

This linear system is known as the Ablowith–Kaup–
Newell–Segur scheme for integrable evolution equations
solvable by inverse scattering.27 The Ablowith–Kaup–
Newell–Segur scheme in the form (42) and (43) includes
solutions with nonzero boundary conditions for such
equations as the nonlinear Schrödinger and modified
Korteweg–de Vries equations. This fact allows us to use
substitutions from Ref. 28 and generate exact solutions of
the system (42) and (43). There are two solutions for any
given value of g:
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w~u! 5 F6~u, g! 5 exp~6iku!

3 F S 6 ik 1
n2k Iout sin 2u

n2k Iout cos 2u 2 n0k
D

3 S 2~g 6 ik !

1 D 1
1

n2k Iout cos 2u 2 n0k

3 S n0k 1 n2k Iout

~n0k 2 n2k Iout!~g 6 ik ! D G , (44)

where k 5 qA1 2 g2. The boundary conditions compat-
ible with Eqs. (35) and (36) are read for the vector c1(Z)
as

c1~Z !: w2~0 ! 5 0, w1~u0! 5 0, (45)

where u0 5 An2k
2 Iout

2 2 n0k
2 L. In order to satisfy the

boundary conditions (45) we take a linear combination of
the two solutions (44), i.e., w(u) 5 c1F1(u, g)
1 c2F2(u, g), and reduce the problem to a linear system
for c1 and c2 . The system has a nonzero solution if g
solves the determinant equation

D1~g; u, u0! 5 g 1
sin 2u0

cos 2u0 2 m
2

tan~ku0!

k

3 S k2 1
1 1 m 2 g sin 2u0

cos 2u0 2 m
D 5 0,

(46)

where m 5 n0k /(n2k Iout), k 5 A1 2 g2, and u0

5 n2k Iout A1 2 m2.
On the other hand, the boundary conditions for the vec-

tor c2(Z) can be rewritten with the help of Eqs. (35)–(41)
as
c2~Z !: w1~0 ! 5 0, w2~2u0! 5 0. (47)
Once again, in order to satisfy the boundary conditions
(47) we take a linear combination of the two solutions
(44), i.e., w(u) 5 c1F1(u, g) 1 c2F2(u, g), and reduce
the problem to a linear system for c1 and c2 . The system
has a nonzero solution if g solves the determinant equa-
tion

D2~g, m, u0!

5 2 2 g2~1 2 m! 2
~2 1 g sin 2u0!~1 2 m!

cos 2u0 2 m

1
tan~ku0!

k H ~1 2 m!gk2

1
g ~1 2 m2! 1 @2 2 g2~1 2 m!#sin 2u0

cos 2u0 2 m
J 5 0.

(48)
Thus the analysis of the linear problem (37) reduces to
finding complex zeros of the functions D6(g) given by
Eqs. (46) and (48). Figures 7(a)–7(d) show behavior of
the functions D1(g) and D2(g), respectively, at real val-
ues of g for several values of the parameters umu < 1 and
u0 . It is clear from the figures that no zeros of D6(g) ex-
ist for g Þ 0. At g 5 0 there is a single zero of D1(g)
and a double zero of D2(g). These solutions for g 5 0
reproduce in fact trivial (i.e., identically zero) solutions of
Eqs. (42) and (43) that can be neglected. Thus we have
shown that there are no nontrivial solutions of Eq. (34) for
real values of g.

In a complex domain of g we analyzed the functions
D6(g) by using Mathematica. Zeros of D6(g) were found
only in the domain where Re(g) , 0 and Im(g) Þ 0. In-
deed, the functions D6(g) are exponentially growing for
Re(l) . 0 (see Fig. 7) and cannot have zeros in this do-
main of the complex plane. Also one can show from Eqs.
Fig. 7. (a), (b) Functions D1 and (c), (d) D2 versus g as given in Eqs. (46) and (48) for two sets: (a), (c) m 5 0 and u0 5 0.25p
@0.2, 0.4, 0.6, 0.8#; (b), (d) m 5 20.75, 20.25, 0.25, 0.75, and u0 5 0.1p(1 2 m2)1/2. No zeros of D6(g) exist for g Þ 0.
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(46) and (48) that zeros of D6(g) cannot exist for Re(l)
5 0 and Im(l)Þ0. Thus the domain for zeros of D6(g) is
constrained by the left half-plane: Re(l) , 0 and Im(g)
Þ 0. These describe oscillatory and exponentially decay-
ing perturbations that gradually vanish in time dynamics
of the periodic nonlinear structure.

Thus we summarize that the highly transmissive state
in the true all-optical limiting regime is asymptotically
stable, i.e., small perturbations of stationary regimes are
decaying exponentially. The stability results are valid
for exact compensation of the Kerr nonlinearity in the
structure, i.e., for nnl 5 0. Both type I and type II insta-
bilities discovered for linear gratings with no compensa-
tion of the Kerr nonlinearities25 do not show up for true
all-optical limiting.

The previous analysis was performed for un0ku
< n2k Iout , i.e., for umu < 1. In the opposite case, when
un0ku . n2k Iout , i.e., umu . 1, the potential Q(Z) in the
linear problem (37) is expressed by Eq. (22). Since the
connection between Eqs. (18) and (22) is u 5 if, we ex-
tend the determinant equations (46) and (48) by replacing
u0 5 if0 and g 5 2iG [the latter condition ensures l in
Eqs. (32), (33), and (39) is proportional to G]. Then, the
spectrum of the linear problem (37) is given by zeros of
the modified functions D6(g):

D̂1~G; m, f0!

5 G 1
sinh 2f0

m 2 cosh 2f0
1

tanh~kf0!

k

3 S k2 2
1 1 m 2 G sinh 2f0

m 2 cosh 2f0
D 5 0, (49)

D̂2~G, m, f0!

5 2 1 G2~1 2 m! 1
~2 1 G sinh 2f0!~1 2 m!

m 2 cosh 2f0

1
tanh~kf0!

k
H ~1 2 m!Gk2

2
G~1 2 m2! 2 @2 1 G2~1 2 m!#sinh 2f0

m 2 cosh 2f0
J 5 0,

(50)
where m 5 n0k /(n2k Iout), k 5 A1 1 G2, and f0

5 n2k Iout LAm2 2 1. The functions D̂6(G) for umu . 1
are not shown but appear similar to Fig. 7. The only new
feature is that these functions have an additional single
zero for real negative values of G. This additional zero
corresponds to exponentially decaying stable perturba-
tions of the nonlinear structure. Any zeros for real and
complex values of G with Re(G) . 0 are absent. Thus we
conclude again that true all-optical limiting is asymptoti-
cally stable for the whole range of I in and Iout in the bal-
anced nonlinear grating, when nnl 5 0.

5. CONCLUSION
We summarize that true all-optical limiting is best
achieved when the Kerr nonlinearity is compensated ex-
actly across the alternating layers, i.e., when the net-
average nonlinearity is zero. In this case a small addi-
tion of the out-of-phase linear grating transforms the
periodic nonlinear structure to an ideal uniform switch
with an abrupt transfer characteristic. Such stable de-
vices are useful in needed optical signal grooming func-
tions such as optical limiting, logic, and signal processing.
There are three factors that affect performance of such
uniform switches: mismatch between the linear and
nonlinear refractive indices, the length of the structure,
and net-average nonlinearity. Local multistability de-
stroys the uniform limiting features when the mismatch
is sufficiently large or the structure is sufficiently long
and the net-average nonlinearity is nonzero. Although
the in-phase gratings do not display a two-step uniform
map, they are more robust with respect to any of these
three factors to serve as stable limiters. In paper II we
will report numerical simulations of the coupled model
and confirm asymptotic stability of true all-optical limit-
ing in nonstationary dynamics of the periodic structure.
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