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Stable all-optical limiting in nonlinear periodic
structures. II. Computations
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Transmission of coherent light through photonic gratings with varying Kerr nonlinearity is modeled within a
coupled-mode system derived from the Maxwell equations. The incident light waves are uniformly stable in
time-dependent dynamics if the photonic grating has zero net-average Kerr nonlinearity. When the average
nonlinearity is weak but nonzero, light waves exhibit oscillatory instabilities and long-term high-amplitude
oscillations in the out-of-phase linear gratings. We show that a two-step transmission map between lower-
transmissive and higher-transmissive states has a narrow stability domain, which limits its applicability for
logic and switching functions. Light waves exhibit cascades of real and complex instabilities in the multi-
stable gratings with strong net-average Kerr nonlinearity. Only the first lower-transmissive stationary state
can be stimulated by the incident light of small intensities. Light waves of moderate and large intensities are
essentially nonstationary in the multistable gratings, and they exhibit periodic generation of Bragg solitons
and blowup. © 2002 Optical Society of America
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1. INTRODUCTION
Fiber-optic communications systems based on temporal
solitons provide one promising avenue toward further in-
creasing the bit rate and reach of the network infrastruc-
ture. Instead of being limited in their performance by
dispersion and nonlinearity, such systems use the band-
width and the intensity of ultrashort, coherent pulses
emitted from mode-locked lasers to combine Kerr nonlin-
earity and chromatic dispersion to advantage, resulting in
stable pulses propagating without intersymbol interfer-
ence over ultralong-haul distances.

Ultimately, the goal of such systems is to reduce the ex-
tent to which signals must be amplified, reshaped, and re-
timed with expensive optical–electronic conversions. In-
stead, in-line processing of such pulses, purely within the
optical domain and without undue demultiplexing and re-
multiplexing, would lead the way toward further reduc-
tions in the price per (bit 3 distance).

It is thus of interest to identify systematically how co-
herent ultrashort pulses will be processed by promising
nonlinear elements. What will be the time response of
the nonlinear devices? How would the intensity-
dependent transmission characteristics be shaped and af-
fect the pulse transmission?

In the present study, we answer these questions by
studying transmission of coherent light of constant inten-
sity through periodic nonlinear devices. This paper fol-
lows the recent publication1 in which we considered the
behavior of periodic materials consisting of alternating
layers with different linear refractive indices and nonlin-
ear Kerr coefficients.

Several physical parameters govern the transmission
0740-3224/2002/081873-17$15.00 ©
of optical signals through these nonlinear gratings. The
condition for Bragg resonance between the light and the
optical grating, the strength of periodic modulations of
the refractive index, the net-average Kerr nonlinearity,
and the variance of Kerr nonlinearities across different
layers (nonlinearity management) determine optimal fab-
rication of photonic devices for signal-processing func-
tions such as logic, limiting, and switching.2 We showed
from a steady-state analysis1 that nonlinear periodic de-
vices, given careful engineering of the nonlinear and lin-
ear components of the grating, can provide a stable, ver-
satile basis for optical signal processing. Novel to the
approach was a focus on reducing the net-average Kerr
nonlinearity across the optical layers and in building an
out-of-phase linear grating. It is these phenomena in
combination that give rise to new and promising func-
tions. However, it is essential to address the stability of
these functions under the assumption of realistic fluctua-
tions in physical parameters such as linear index and
layer thickness. Such effects may give rise to temporal
instabilities, noise generation, and other parasitics. We
study the instability effects in the present, sequel paper.
As our main result, we show that the useful optimal
transmission map between lower-transmissive and
higher-transmissive states has a narrow stability domain
that limits its applicability for logic and switching func-
tions.

2. MODEL AND
STATIONARY-TRANSMISSION REGIMES
Signal processing in photonic gratings is based on match-
ing the light frequency with the center of the bandgap in
2002 Optical Society of America
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photonic spectra. The photonic gratings exhibit the
intensity-dependent response to the incident light that is
modeled within the coupled-mode approximation of the
Maxwell equations.3

The coupled-mode approximation is developed under
several assumptions. First, the photonic grating is built
up from extended layers of bulk optical materials. Sec-
ond, the intensity of the incident wave and the variance of
the refractive indices are considered to be small. Finally,
the optical wavelength matches the first bandgap of the
photonic spectrum (the Bragg resonance condition). Un-
der these assumptions, the incident and reflected light in
the optical material is modeled by the coupled-mode equa-
tions derived in Ref. 1:
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where A1(z, t) and A2(z, t) are amplitudes of the inci-
dent and reflected waves, z and t are scaled space and
time variables, and n0k , nnl , and n2k are material param-
eters. The parameter n0k represents the variance of the
linear refractive index, i.e., the strength of the linear
grating. The parameter nnl stands for the average Kerr
nonlinearity across the structure. The parameter n2k is
the variance of the Kerr nonlinearity between the layers,
i.e., it measures the nonlinearity management of the grat-
ing. The positive sign n2k . 0 is used henceforth for con-
venience.

We assume that the optical grating has a finite length
L such that z P @0,L#. The coherent light transmission
through the photonic grating is stationary, when the am-
plitudes A6 do not depend on time, i.e., when A6

5 A6(z). The incident (I in), reflected (Iref), and trans-
mitted (Iout) intensities are defined from stationary solu-
tions of Eqs. (1) and (2) at the ends of the finite interval
z P @0,L#,

I in 5 uA1u2~0 !, Iref 5 uA2u2~0 !, Iout 5 uA1u2~L !,
(3)

and the backward wave vanishes at the right end of the
grating, uA2u2(L) 5 0. We have used the backward
finite-difference scheme (see Ref. 1) to find the time-
independent solutions A6(z) of the system (1)–(2) start-
ing from the boundary conditions at the right end z 5 L
and iterating back to the left end z 5 0. Matching the
values of A1(z) with the boundary conditions (3), we have
analyzed the stationary transmission by plotting the
transmitted intensity Iout versus the incident intensity
I in .

The stationary regimes are classified into three differ-
ent types: (i) stable limiting, (ii) locally multistable lim-
iting, and (iii) multistable regime. The three regimes are
shown in Fig. 1 for the input–output transmission char-
acteristic Iout 5 Iout(I in). The corresponding optical grat-
ing has the material parameters L 5 20, n2k 5 1, and
different values of nn1 and n0k .

The all-optical limiting regime is uniform for all perti-
nent incident intensities, i.e., the function Iout(I in) is one-
to-one (curves Ia and Ib in Fig. 1). The multistable re-
gime shows up as branching of the function Iout(I in)
(curve III in Fig. 1), when several stationary transmis-
sions may occur for the same value of the incident inten-
sity I in . The locally multistable limiting is an interme-
diate regime between all-optical limiting and
multistability (curve II in Fig. 1). It exhibits branching
for small and intermediate values of I in , but it is clamped
below the limiting value for Iout at large values of I in .
The existence domains I, II, and III of the three regimes
are shown in Fig. 2 for the standardized photonic grating
with L 5 20 and n2k 5 1. The existence domains are de-
rived from the coupled-mode system (1)–(2) (see Ref. 1 for
details):

(i) The all-optical limiting regime occurs for optical
gratings with strong nonlinearity management, when

n2k >
3

4
unnlu. (4)

If the nonlinearity is balanced exactly, i.e., nnl 5 0, the
all-optical limiting occurs both for in-phase (n0k > 0) and
out-of-phase (n0k , 0) optical gratings. However, the
transmission characteristic Iout(I in) then has two differ-
ent shapes: it is concave downward for in-phase gratings
(curve Ia in Fig. 1), but it is a two-step linear map for out-
of-phase gratings (curve Ib in Fig. 1). This role of the
out-of-phase gratings is explained by a threshold value
Iout 5 Ithr [ un0ku/n2k , when the varying part of the lin-
ear and Kerr nonlinear indices vanishes and the photonic
grating becomes completely transparent (see Ref. 1).
The Kerr nonlinearity management dominates over the

Fig. 1. Input–output transmission curve for the nonlinear peri-
odic optical structure with parameters (Ia) nnl 5 1, n0k 5 0, (Ib)
nnl 5 0, n0k 5 20.15, (II) nnl 5 1, n0k 5 20.15, and (III) nnl
5 1.4, n0k 5 0. The other material parameters are standard-
ized as L 5 20 and n2k 5 1. The photonic structure is in the
stable all-optical limiting regime for curves Ia and Ib, the locally
multistable limiting regime for curve II, and the multistable re-
gime for curve III.
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linear grating for Iout . Ithr , but it is smaller than the
linear grating for Iout , Ithr . If the balance of Kerr non-
linearities is broken, i.e., nnl Þ 0, the all-optical limiting
is preserved only for in-phase or weak out-of-phase grat-
ings under the constraint

n0k > 2
pn2k

3unnluL
. (5)

The latter condition detects the threshold when the sta-
tionary distribution I6 5 uA6u2(z) becomes nonmonotonic
in z. We notice that this condition is not directly related
to the threshold when the curve Iout(I in) becomes multi-
valued. However, these two thresholds are close to each
other. The domain for the all-optical limiting regime is
shown in Fig. 2 as domain I.

(ii) When the constraint (4) is held but the constraint
(5) is violated, i.e., for strong out-of-phase gratings with
n0k , 0, the light transmission has local multistability
for the intermediate range of incident intensities and fi-
nal limiting at large values of I in (curve II in Fig. 1). The
local multistability occurs due to the dominant role of the
linear grating for subthreshold values of Iout , Ithr . It
follows from constraint (5) that it is hard to maintain the
two-step linear map as in curve Ib of Fig. 1. Longer
structures or weaker nonlinearity management lead to lo-
cal branching and multistability of the out-of-phase grat-
ing with nnl Þ 0. The domain for the locally multistable
limiting regime is shown in Fig. 2 as domain II.

(iii) When the constraint (4) is violated, i.e., for optical
gratings under weak nonlinearity management and
strong net-average nonlinearity, the light transmission is
multistable for all ranges of incident intensities (curve III
in Fig. 1). When the nonlinearity management is negli-
gible, i.e., when n2k 5 0, the input–output transmission
curve Iout(I in) has the S-bistable shape that is well known
in the approximation of an average Kerr nonlinearity (see
review in Ref. 3). The multistability domain is shown in
Fig. 2 as domain III.

Fig. 2. Existence domains I, II, and III of the three stationary
regimes of photonic gratings: (i) stable all-optical limiting, (ii)
locally multistable limiting, and (iii) multistability on the plane
(n0k , nnl). The other material parameters are standardized as
L 5 20 and n2k 5 1. The particular parameter values from Fig.
1 are marked by stars.
The three regimes above were classified by use of the
bistability theory known in the physics of periodic
structures.4–7 It is usually believed3 that the stationary
light transmission with the output intensity correspond-
ing to a negative slope of the curve Iout 5 Iout(I in) is lin-
early unstable. The hypothesis was confirmed numeri-
cally by de Sterke,8 who identified real unstable
eigenvalues of the linear stability problem associated
with the negative-slope stationary transmission. De
Sterke considered the coupled-mode system (1)–(2) in the
case n2k 5 0 (no nonlinearity management).

A different analytical method was developed recently
by Ovchinnikov9 who confirmed instability of the
negative-slope stationary transmission. Ovchinnikov
considered the one-dimensional Maxwell equation de-
scribing a layer of uniform nonlinear optical material. In
this case, i.e., for n0k 5 n2k 5 0, the coupled-mode sys-
tem (1)–(2) has no stationary solutions satisfying the
boundary conditions (3). Therefore the stationary-
transmission regimes considered in Ref. 9 are beyond the
coupled-mode approximation.

The linear stability results are unknown for the
coupled-mode system (1)–(2) in a general case. First, no
mathematical theory exists to date, to our knowledge, to
confirm the instability and bifurcations for the negative-
slope light transmission. Second, even for the most stud-
ied cases, a complicated instability pattern was
observed,8,9 when not only negative-slope transmissive
states but also positive-slope highly transmissive states
were linearly unstable due to complex eigenvalues of the
linear stability problem. The large-amplitude pulsations
result from instability of highly transmissive states, and
these pulsations may lead to chaotic dynamics of light in
the photonic grating.10,11

We proved analytically in Ref. 1 that the all-optical lim-
iting regime is linearly stable in optical gratings with bal-
anced nonlinearity management (when nnl 5 0). No real
or complex eigenvalues of the linear stability problem
may exist in this case. Thus we concluded that any non-
stationary dynamics of the nonlinearity-compensated op-
tical grating is expected to converge to the stationary
light transmission for a given value of the incident inten-
sity I in . However, this stability result is very special
since it is based on integrability of the linear stability
problem for nnl 5 0.

In this paper we study numerically the linear stability
and the nonstationary dynamics of photonic gratings,
when the nonlinearity is not compensated exactly, i.e.,
when nnl Þ 0. We deploy an original numerical method
based on finite differences and use it to quantify the non-
stationary light transmission through photonic gratings.
We show that the in-phase gratings (n0k > 0) remain
stable for nnl Þ 0 in the domain I (see Fig. 2). In this
case, the all-optical limiting transmission curve Iout(I in) is
concave downward as in curve Ia of Fig. 1. However, the
out-of-phase gratings (n0k , 0) are destabilized at nnl
Þ 0 due to oscillatory instabilities arising for larger
negative n0k . Thus the all-optical limiting regime with
the two-step linear map as in curve Ib of Fig. 1, while
stable for nnl 5 0, exhibits instabilities for weaker nonlin-
earity management, when nnl Þ 0. Furthermore, we
show that there exist several real and complex unstable
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eigenvalues of the linear stability problem in the domains
II and III (see Fig. 2). These instabilities and the non-
stationary dynamics of exponentially growing perturba-
tions generalize the results of de Sterke8 for photonic
gratings with no nonlinearity management (n2k 5 0).

There are several methods developed for numerical
modeling of the coupled-mode system (1)–(2) for n2k
5 0. The split-step spectral method is widely used in
nonlinear optics for numerical modeling of time-evolution
problems.12 The split-step method is second order in
time, and it is usually time consuming compared with
finite-difference methods. An alternative collocation
method based on an implicit Runge–Kutta method is de-
veloped for the couple-mode system by de Sterke et al.13

The collocation method is fourth order in time, but it is
substantially faster than spectral methods. Although
the collocation method is well suited to solve the time-
evolution problem associated with the system (1)–(2), it
has some limitations. The collocation method uses the
coordinate transformations to rotate the system (1)–(2)
along to the wave characteristics z 6 t. As a result, the
time step size cannot be different from the space step size.
Also the method cannot be extended to solving the linear
stability problem and computing unstable eigenvalues for
stationary-transmission regimes.

In the present paper, we use the Crank–Nicholson im-
plicit method based on second-order finite differences in
order to compute both the time-evolution problem and the
linear eigenvalue problem associated with the coupled
system (1)–(2). A complete software package enables us
to solve several computational problems for dynamics of
photonic gratings: (i) to obtain the stationary regime, (ii)
to compute stable and unstable eigenvalues of the station-
ary regime in the linear stability problem, (iii) to simulate
perturbations of the stationary regime in the time-
evolution problem, and (iv) to model nonstationary trans-
mission under a variable intensity of the incident light.

The computational results are described in the paper in
the following order. Section 3 presents the finite-
difference method applied to the coupled system (1)–(2).
Several characteristic time evolutions associated with
stable limiting, locally multistable limiting, and multi-
stable transmission regimes are described in Section 4.
Unstable eigenvalues are computed in Section 5, where
stability analysis of stationary regimes is quantified.
Transitions to stationary or nonstationary regimes stimu-
lated by the incident light are modeled in Section 6. The
different possibilities are matched with existence of un-
stable eigenvalues in the linear stability problem. De-
tails of the numerical methods for Sections 3 and 5 are
given in Appendixes A and B.

3. NUMERICAL METHOD
When the periodic optical material is illuminated by the
incident light, the coupled-mode system (1)–(2) is mod-
eled at the finite interval z P @0,L# subject to the bound-
ary conditions

A1~0, t ! 5 AI in exp~iu in!, A2~L, t ! 5 0, (6)

where I in 5 I in(t) and u in 5 u in(t) represent the ampli-
tude and phase modulations of the incident light. The
complex-valued system (1)–(2) can be decomposed into
the real and imaginary parts

A1 5 u 1 iw, A2 5 v 1 iy. (7)

The real functions u, w, v, and y satisfy the coupled sys-
tem

]u

]t
1

]u

]z
1 n0k y 1 fu 5 0,

2
]y

]t
1

]y

]z
1 n0ku 1 fy 5 0, (8)

2
]w

]t
2

]w

]z
1 n0kv 1 fw 5 0,

]v

]t
2

]v

]z
1 n0kw 1 fv 5 0, (9)

where the nonlinear (cubic) functions are given by

fu 5 f~u, w, v, y !, fw 5 f~w, u, y, v !,

fv 5 f~v, y, u, w !, fy 5 f~ y, v, w, u !,

(10)

f~u, w, v, y ! 5 nnl~u2 1 w2 1 2v2 1 2y2!w

1 n2k@~u2 1 3w2 1 v2 1 y2!y

1 2uwv#. (11)

In neglection of the nonlinear function f(u, w, v, y), the
system (8)–(9) can be further decomposed into two partial
subsystems for (u, y) and (w, v). Each subsystem re-
duces to a scalar wave (Klein–Gordon) equation, e.g., for
the function u 5 u(z, t):

]2u

]t2 2
]2u

]z2 1 n0k
2 u 5 0. (12)

In the finite-difference method, the functions u, w, v, and
y are approximated on the grid

z 5 zn 5 nh, n 5 0,1 ,..., N, ~N 1 1 !, (13)

where h is the space step size, and the grid has N interior
points and two end points at z0 5 0 and zN11 5 (N
1 1)h 5 L, i.e., h 5 L/(N 1 1). For time evolution,
the functions u, w, v, and y are defined at the time in-
stances t 5 tk 5 kt , where k 5 0,1 ,..., K, and t is the
time step size. For each time instance t 5 tk , we intro-
duce the vectors of unknowns

uk 5 3
u1,k

u2,k

.

.

.
uN,k

uN11,k

4 , wk 5 3
w1,k

w2,k

.

.

.
wN,k

wN11,k

4 ,
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vk 5 3
v0,k

v1,k

.

.

.
vN21,k

vN,k

4 , yk 5 3
y0,k

y1,k

.

.

.
yN21,k

yN,k

4 . (14)

The values uN11,k , wN11,k and v0,k , y0,k are boundary val-
ues at the end points z 5 L and z 5 0, respectively.
These values are also unknown at each time instance in
contrast to the boundary values u0,k , w0,k and vN11,k ,
yN11,k that follow from the boundary conditions (6) as

u0,k 5 AI in~tk! cos u in~tk!,

w0,k 5 AI in~tk! sin u in~tk!,

vN11,k 5 0, yN11,k 5 0. (15)

The scalar wave equation (12) is numerically modeled by
the implicit Crank–Nicholson method:

un,k11 2 2un,k 1 un,k21

t 2 1
n0k

2 ~un,k11 1 un,k21!

2

2
un11 ,k11 2 2un,k11 1 un21,k11

2h2

2
un11,k21 2 2un,k21 1 un21,k21

2h2 5 0. (16)

The numerical method (16) is known to be uncondition-
ally stable for any values of t, h, and n0k . The global
truncation error of the finite (central) difference approxi-
mations for partial derivatives has the order of O(t 2

1 h2). The details of the numerical method for the com-
plete system (8)–(9) are described in Appendix A. Given
the starting values at k 5 0 and k 5 1 for the vectors in
Eqs. (14), the time steps are performed by solving the fol-
lowing linear systems for k > 1,

F A~r ! kI1

2kI2 B~r !
G Fuk11

yk11
G 5 FA~2r ! 2kI1

kI2 B~2r !
G Fuk21

yk21
G

1 FHu k

Hy k
G , (17)

FA~r ! 2kI1

kI2 B~r !
G Fwk11

vk11
G 5 FA~2r ! kI1

2kI2 B~2r !
G Fwk21

vk21
G

1 FHw k

Hv k
G , (18)

where

r 5
t

2h
, k 5 tn0k , (19)

while the matrices A(r), B(r), I1 , and I2 and the nonlin-
ear functions Hu , Hw , Hv , and Hy are all given in Eqs.
(A9)–(A15) of Appendix A. Since initial conditions define
only the first starting approximation for the vectors u0 ,
w0 , v0 , and y0 , the first time step is to be performed
separately. An explicit two-point predictor–corrector
method is used to approximate the vectors u1 , w1 , v1 ,
and y1 .

In the numerical computations described in the paper,
we have standardized the periodic optical grating at the
fixed length L 5 20 with N 5 200 grid points. The vari-
ance of the Kerr nonlinearity is standardized as n2k 5 1
without loss of generality. The time step t is chosen to
reduce the nonlinear effects produced by the vectors Hu ,
Hw , Hv , and Hy in Eqs. (17)–(18). Indeed, the linearly
stable numerical method can be destabilized by large non-
linearities. We define the time step t in the form

t 5 H 0.5h hM , 0.002

0.001M21 hM . 0.002
, (20)

where M 5 max0<t<T@Iin(t)#3/2. If the nonlinear func-
tions Hu , Hw , Hv , and Hy are smaller than order of
O(1023), the time step size is matched with the space
step size: t 5 0.5h. Otherwise, the nonlinear functions
are reduced to the order of O(1023) by reducing the time
step size t according to the second line in Eq. (20).

4. TIME-DEPENDENT DYNAMICS OF
NEAR-STATIONARY LIGHT TRANSMISSION
Here we test the numerical method and model the time-
dependent dynamics of near-stationary light waves.
First, we consider the grating under balanced nonlinear-
ity management, when nnl 5 0. In the latter case, the
stationary regimes A6 5 A60(z) were proven analytically
to be linearly stable.1 To confirm this fact, we set the ini-
tial condition in the form of a perturbed stationary distri-
bution:

A1~z, 0! 5 A10~z !,

A2~z, 0! 5 A20~z !@1 1 a exp~2z !#, (21)

where a is the perturbation factor and the exponential
function localizes the perturbation near the left boundary
at (Dz) ' 1 ! L 5 20, where the incident wave is illumi-
nated. The dynamics of the light transmission in the
case nnl 5 0 is very simple even for moderate perturba-
tion, a 5 0.1. The perturbation disappears due to emis-
sion of the reflected and transmitted radiations through
the ends of the optical material. As a result, the tran-
sient dynamics induced by the perturbation quickly con-
verges to the stationary regime A6 5 A60(z). We have
checked that this possibility is observed both for in-phase
(n0k > 0) and out-of-phase (n0k , 0) linear gratings,
when the net-average Kerr nonlinearity is compensated
exactly, i.e., nnl 5 0. This numerical result confirms con-
clusions of Ref. 1.

Now we turn to the in-phase linear grating when the
Kerr nonlinearity is not compensated, i.e., when nnl Þ 0
and n0k > 0. Under the constraint (4), the in-phase pho-
tonic gratings are in the all-optical limiting regime across
the layers, and they have a one-to-one concave downward
transmission curve Iout(I in), as in curve Ia of Fig. 1 for
n0k 5 0 and nnl 5 1. The numerical evolution of the per-
turbed stationary distribution (21) is shown in Fig. 3 for
a 5 0.1 and Iout 5 0.04. The perturbation factor induces
a wave packet in the forward wave A1 that propagates all
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the way from the left to the right end of the structure and
radiates away [see Fig. 3(a)]. The backward wave A2 re-
mains smooth during transmission of the wave packet
and follows this process with small distortion [see Fig.
3(b)]. After the packet is radiated away, the light trans-
mission settles at a stable stationary regime with Iout
5 0.04 (dotted curves in Fig. 3). A relatively large tran-
sient radiation is the only difference of the dynamics of in-
phase photonic grating for nnl Þ 0 compared with that for
nnl 5 0.

A different possibility is observed for the out-of-phase
linear gratings when the Kerr nonlinearity is not compen-
sated, i.e., when nnl Þ 0 and n0k , 0. When the con-
straint (5) is violated but the constraint (4) is preserved,
the stationary limiting regime becomes locally multi-
stable for small and intermediate values of I in , as in
curve II of Fig. 1 for n0k 5 20.15 and nnl 5 1. The local
multistability occurs from a deformation of the two-step
linear map Iout(I in) that is uniformly stable for nnl 5 0
(compare curves Ib and II in Fig. 1). The local multista-

Fig. 3. Intensities of (a) the forward and (b) backward waves in
different time instances: t 5 12.9 and t 5 64.4. The station-
ary distribution is shown by a dotted curve for Iout 5 0.04. The
standardized photonic structure has the material parameters
nnl 5 1 and n0k 5 0 (see curve Ia in Fig. 1). The perturbation
of the stationary transmission disappears by means of radiation
through the ends of the structure.
bility of the out-of-phase photonic gratings exhibits the
much more complicated dynamics shown in Fig. 4. A
small initial perturbation of the stationary distribution

Fig. 4. Intensities of (a) the forward and (b) backward waves in
different time instances: t 5 11.1, t 5 44.5, and t 5 88.9. The
initial (almost stationary) distribution at t 5 0 is shown by a
dotted curve for Iout 5 0.12. The standardized photonic struc-
ture has the material parameters nnl 5 1 and n0k 5 20.15 (see
curve II in Fig. 1). The stationary regime is unstable, and the
light transmission exhibits high-amplitude oscillations. The
transmitted intensity Iout as a function of time t is shown in (c).
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(21) with a 5 0.01 and Iout 5 0.12 induces a large-
amplitude wave packet transmitted from the left to the
right end of the structure [see Fig. 4(a)]. Contrary to the
stable dynamics shown in Fig. 3, the light transmission in
the unstable out-of-phase grating does not become sta-
tionary after the wave packet passes away. Instead, pe-
riodic oscillations are induced in the structure [see Fig.
4(b)]. The oscillations have large amplitude but still re-
semble the unstable stationary distribution [shown by the
dotted curve in Fig. 4(b)]. The oscillations are clearly
seen in Fig. 4(c), where we plot the transmitted intensity
Iout 5 uA1u2(L, t) as a function of time t.

When the Kerr nonlinearity management is weak and
the constraint (4) is violated, the stationary transmission
becomes multistable, as in curve III of Fig. 1 for n0k 5 0
and nnl 5 1.4. The negative-slope transmission regimes
are known to switch to positive-slope lower-intensity

Fig. 5. Intensities of (a) the forward and (b) backward waves in
different time instances: t 5 10.1 and t 5 50.5. The initial
unstable stationary regime at t 5 0 is shown by a dashed curve
for Iout 5 0.09. The final stable stationary regime is shown by a
dotted curve for Iout 5 0.062. Both the regimes are stimulated
by the same incident intensity, I in 5 0.135. The standardized
photonic structure has the material parameters nnl 5 1.4 and
n0k 5 0 (see curve III in Fig. 1). The time-dependent dynamics
of the periodic structure results in switching from an unstable
highly transmissive state to a stable lower-transmissive state.
transmissive states or to large-amplitude oscillations
near higher-intensity transmissive states.3 Figure 5 il-
lustrates the switching of the unstable stationary regime
at Iout 5 0.09 (dashed curve) under the perturbation (21)
with a 5 0.01 to a stable lower-transmissive stationary
regime at Iout 5 0.062 (dotted curve). The value of the
incident intensity I in is the same for both the regimes:
I in 5 0.135. The switching occurs through a transition
front wave that moves across the structure from the left
to the right ends [see Fig. 5(a)]. Relaxation rather than
oscillatory dynamics is observed in the switching transi-
tion [see Fig. 5(b)].

Thus we summarize that there are three general types
of dynamics of light waves transmitted in nonlinear peri-
odic structures: (i) relaxation to a stable stationary
state, (ii) oscillations near an unstable stationary state,
and (iii) switching from unstable to stable stationary
states. We explain the three characteristic time-
evolution patterns by studying the unstable eigenvalues
of the linear stability problem associated with a
stationary-transmission regime.

5. LINEAR STABILITY AND UNSTABLE
EIGENVALUES
Here we compute the spectrum of stable and unstable ei-
genvalues associated with a stationary-transmission re-
gime in the coupled-mode system (1)–(2). The stationary
regime corresponds to the time-independent solution A6

5 A60(z) that satisfies the boundary conditions (3). We
consider a small perturbation to the time-independent so-
lution, separate the real and imaginary parts according to
Eqs. (7), and define the time evolution constant l in the
form

u 5 u0~z ! 1 u1~z !exp~lt !,

w 5 w0~z ! 1 w1~z !exp~lt !, (22)

v 5 v0~z ! 1 v1~z !exp~lt !,

y 5 y0~z ! 1 y1~z !exp~lt !. (23)

We assume that the wave emission outside the periodic
structure is not affected by the perturbation, i.e., the in-
cident wave has the same input values I in and u in as in
the stationary regime [see Eqs. (6)]. Therefore the per-
turbation terms in Eqs. (22)–(23) satisfy the zero bound-
ary conditions:

u1~0 ! 5 w1~0 ! 5 v1~L ! 5 y1~L ! 5 0. (24)

The time-evolution constant l defines the spectrum of the
stationary regime. If Re(l) . 0, the spectrum is un-
stable, i.e., a small perturbation (u1 , w1 , v1 , y1)(z) sat-
isfying the zero boundary conditions (24) grows exponen-
tially in time and destroys eventually the stationary
transmission through the periodic optical structure. The
perturbation terms satisfy a linear eigenvalue problem
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with the Dirac-type complex operator (see Ref. 1). Sepa-
rating the real and imaginary parts, the linear eigenvalue
problem can be written as

2
]u1

]z
2 n0ky1 2 fu8 5 lu1 ,

]y1

]z
1 n0ku1 1 fy8 5 ly1 ,

(25)

2
]w1

]z
1 n0kv1 1 fw8 5 lw1 ,

]v1

]z
2 n0kw1 2 fv8 5 lv1 ,

(26)

where the linearized functions fu8 , fw8 , fv8 , and fy8 are con-
structed from a function f 8(u, w, v, y) according to the
same rule as in Eq. (10). The function f 8(u, w, v, y) is
the Frechet derivative of f(u, w, v, y) at the stationary
solution (u0 , w0 , v0 , y0) with the perturbation
(u1 , w1 , v1 , y1):

f 8 5 nnl@2u0w0u1 1 ~u0
2 1 3w0

2 1 2v0
2 1 2y0

2!w1

1 4w0v0v1 1 4w0y0y1#

1 n2k@2~u0y0 1 w0v0!u1 1 2~3w0y0 1 u0v0!w1

1 2~u0w0 1 v0y0!v1 1 ~u0
2 1 3w0

2 1 v0
2 1 y0

2!y1#.

(27)

Appendix B describes the finite-difference method applied
to the linear eigenvalue problem (25)–(26). The un-
known functions u1 , w1 , v1 , and y1 are discretized on the
grid (13). They can be grouped into the vectors of un-
knowns given in Eqs. (14). Dropping the subindex for
the vectors u, w, v, and y, we reduce the linear eigen-
value problem (25)–(26) to the matrix eigenvalue prob-
lem:

F A` 2kI1 0 0

kI2 B` 0 0

0 0 A` kI1

0 0 2kI2 B`

GF u
y
w
v
G 1 UF u

y
w
v
G 5 gF u

y
w
v
G ,

(28)

where

k 5 2hn0k , g 5 2hl, (29)

the matrices I6 are defined in Eqs. (A11) of Appendix A,
and the matrices A` , B` , and U are given in Eqs. (B9)–
(B11) of Appendix B.

The standard MATLAB computational package of nu-
merical linear algebra can be used to find the spectrum of
the matrix eigenvalue problem (28). The advantage of
this approach is that the whole spectrum of stable and
unstable eigenvalues is deduced from a single computa-
tion of the problem (28). The numerical error for the ei-
genvalues l is of the order of O(h2), as it follows from the
truncation error of the second-order finite differences.

Below, we report the principal results on the existence
of unstable eigenvalues in the linear eigenvalue problem
(25)–(26). First, we consider a simple case Iout 5 0,
when the problem can be studied analytically since u0
5 w0 5 v0 5 y0 5 0 and f 8 5 0. The linear systems
(25) and (26) are uncoupled, and the spectrum of eigen-
values is double degenerate. Each uncoupled subsystem
can be solved exactly, e.g.,
u1 5 n0k sin kz, y1 5 2l sin kz 2 k cos kz, (30)

where l2 1 n0k
2 1 k2 5 0. It follows from the boundary

conditions u1(0) 5 y1(L) 5 0 that l 5 2k cot(kL). As a
result, the parameter k satisfies the algebraic equation

1 1 n0k
2

sin2~kL !

k2 5 0. (31)

Solutions of this equation do not exist for real values of k
and l. However, there are solutions for complex values
of k and l. We show the double-degenerate branch of the
spectrum of l in Fig. 6(a) as it is found from Eq. (31).
The spectrum of l is located in the asymptotically stable
domain, where Re(l) , 0. The two largest eigenvalues
are closest to the origin l 5 0: they have Re(l)
' 20.0311 and Im(l) ' 60.2074. Notice that complex
eigenvalues are symmetric with respect to the axis:
Im(l) 5 0. Indeed, since the linear eigenvalue problem
(25)–(26) has real coefficients, it has either real or
complex-conjugate eigenvalues. In order to test the
finite-difference approximation used to replace the sys-
tem (25)–(26) by the matrix eigenvalue problem (28), we
construct analytical solutions to Eqs. (B1)–(B4) of Appen-
dix B in the case Iout 5 0. The system (B1)–(B4) is de-
coupled for F8 5 0, and the discrete analogue of Eq. (30)
is

u1 5 n0k sin~knh !,

y1 5 2l sin~knh ! 2
sin~kh !

h
cos knh, (32)

where l2 1 n0k
2 1 sin2(kh)/h2 5 0. The boundary condi-

tions u0 5 yN11 5 0 are satisfied with l
5 2sin(kh)cot(kL)/h, such that the parameter k satisfies
the algebraic equation

1 1 ~n0kh !2
sin2~kL !

sin2~kh !
5 0. (33)

The spectrum of l is shown in Fig. 6(b) as it is found from
Eq. (33). The two branches are still located in the stable
left half-plane of l, but they move toward the axis Re(l)
5 0 for larger values of Im(l). This is the artifact follow-
ing from truncation of continuous derivatives by their
central-difference approximations. However, the spec-
trum is not affected near the origin, with the two largest
eigenvalues being at Re(l) ' 20.0311 and Im(l)
' 60.2074.

The matrix eigenvalue problem (28) is derived when
the system (B1)–(B4) is modified by the end-point equa-
tions (B5)–(B8) in Appendix B. This modification de-
forms the spectrum of l. The double branches of the
spectrum are shown in Fig. 6(c) as it is found from Eq.
(28) for Iout 5 0. However, the deformation of the spec-
trum occurs for larger values of Im(l), such that the ei-
genvalues closest to the origin of l are computed with the
same accuracy: Re(l) ' 20.0311 and Im(l) ' 60.2074.

Thus the numerical results are expected to be accurate
for eigenvalues located near the origin of l. The two
largest eigenvalues may cross the axis Re(l) 5 0, turning
to complex unstable eigenvalues (Hopf bifurcation). Al-
ternatively, the two eigenvalues may collide at Im(l) 5 0
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and Re(l) , 0. Then, one of the two real eigenvalues
may cross the axis Im(l) 5 0, leading to a single real un-
stable eigenvalue (real bifurcation). In order to study

Fig. 6. Spectrum of eigenvalues for Iout 5 0, L 5 20, and n0k
5 20.15. (a) The eigenvalues are found from the analytical so-
lution (30) and (31). (b) The eigenvalues are found from the
analytical solution (32) and (33). (c) The eigenvalues are found
numerically from the linear matrix problem (28).
these two bifurcations, we trace eigenvalues (usually, of
limited number) with Re(l) . 0 and uIm(l)u , 10 [see Fig.
6(c)].

When the Kerr nonlinearity is compensated exactly
across the photonic grating, i.e., nnl 5 0, the spectrum of
Eqs. (25)–(26) was proven to be stable and located for
Re(l) , 0.1 We confirm this fact numerically within the
matrix eigenvalue problem (28). The degeneracy be-
tween two branches of the spectrum in Fig. 6(c) is de-
stroyed for Iout . 0, but the two branches stay in the left
half-plane of l for any Iout , I lim .

For nnl Þ 0, some eigenvalues may in principle emerge
to the right half-plane of l through the Hopf or real bifur-
cations. However, when the constraints (4) and (5) are
satisfied, we do not find any unstable eigenvalues in the
matrix problem (28). Thus the in-phase and weakly out-
of-phase gratings in the all-optical limiting regime are
uniformly stable in the domain I of Fig. 2, i.e., the two
branches of the spectrum of l remain within the left half-
plane of l for the whole range of the transmitted intensity
Iout . The stable spectrum explains the simple dynamics
of the photonic gratings shown in Fig. 3. A perturbation
of the stationary regime disappears by means of radiation
through the ends of the structure.

When the constraint (5) is violated, the nonlinear peri-
odic structure is in the locally multistable limiting re-
gime, as in domain II of Fig. 2. Such structures occur for
the long devices with weak nonlinearity management and
strong out-of-phase linear grating. In this case, we find
some unstable real and complex eigenvalues of l in the
matrix problem (28). Figures 7(a) and 7(b) show un-
stable eigenvalues l of the matrix problem (28) for the
out-of-phase grating with nnl 5 1 and n0k 5 20.1, when
the transmission curve Iout(I in) is shown in Fig. 7(c). Al-
though the curve displays the one-to-one dependence, the
constraint (5) is violated for the given material param-
eters. Then, the stationary regime has few unstable ei-
genvalues that emerge from the largest eigenvalues of the
two branches of the spectrum of l. A single complex pair
of unstable eigenvalues crosses the stability threshold at
Iout ' 0.074 (Hopf bifurcation), and it exists for interme-
diate intensities 0.074 , Iout , 0.131 [see Fig. 7(b)]. At
Iout 5 0.131, the complex pair merges into a pair of posi-
tive and negative real eigenvalues at the origin l 5 0.
The unstable (positive) real eigenvalue exists for large in-
tensities 0.131 , Iout , I lim ' 0.156 [see Fig. 7(a)].
Thus all stationary regimes, including the limiting re-
gime, are unstable for Iout . 0.074, or, equivalently, for
I in . 0.0743 [see Fig. 7(c)].

More unstable eigenvalues show up when parameters
of the out-of-phase photonic gratings violate strongly the
constraint (5). Figures 8(a) and 8(b) show unstable real
and complex eigenvalues l of the matrix problem (28) for
the out-of-phase grating with nnl 5 1 and n0k 5 20.15,
when the transmission curve Iout(I in) is shown in Fig.
8(c). The curve has negative-slope branches of local mul-
tistability at small and intermediate intensities. These
negative-slope branches are associated with real unstable
eigenvalues in the linear spectrum [see Fig. 8(a)] that oc-
curs at Iout ' 0.002 [at the point of vertical slope of
Iout(I in)]. Two real eigenvalues exist for 0.002 , Iout
, 0.018 [see Fig. 8(a)]. The two real eigenvalues turn
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into pairs of complex eigenvalues according to two differ-
ent possibilities. The first real eigenvalue simply disap-
pears at Iout ' 0.018, and then a pair of unstable complex
eigenvalues show up at Iout ' 0.023 with a nonzero
imaginary part [see Fig. 8(b)]. The other real eigenvalue

Fig. 7. Unstable (a) real and (b) complex eigenvalues versus the
transmitted intensity Iout of the linear matrix problem (28) for
the standardized photonic structure with material parameters
nnl 5 1 and n0k 5 20.1. The input–output transmission char-
acteristics Iout(I in) is shown in (c).
splits into a pair of complex eigenvalues at Iout 5 0.025;
this bifurcation happens at the origin l 5 0 [see Fig.
8(b)]. The first complex eigenvalue exists for Iout

Fig. 8. Unstable (a) real and (b) complex eigenvalues versus the
transmitted intensity Iout of the linear matrix problem (28) for
the standardized photonic structure with material parameters
nnl 5 1 and n0k 5 20.15. The input–output transmission char-
acteristics Iout(I in) is shown in (c), and it corresponds to curve II
on Fig. 1.
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, 0.121 and merges at Iout ' 0.121 with the stable
branches of l. The other complex eigenvalue remains for
the whole domain of existence of the stationary solution,
and it switches back to a real eigenvalue at Iout ' 0.222
(near the limiting value Iout ' I lim) [see Fig. 8(a)]. The
latter bifurcation resembles the one shown in Figs. 7(a)
and 7(b) for n0k 5 20.1.

Thus the stationary light transmission through the
out-of-phase photonic grating with n0k 5 20.15 is un-
stable for Iout . 0.002, or, equivalently, for I in . 0.042.
The unstable spectrum explains the high-amplitude oscil-
lations of the light transmission shown in Fig. 4. Indeed,
the stationary regime of the photonic grating for nnl 5 1
and n0k 5 20.15 with Iout 5 0.12 has a single pair of un-
stable complex eigenvalues [see Fig. 8(b)], and the imagi-
nary part of the complex eigenvalue Im(l) ' 0.197
matches well with a frequency of the high-amplitude os-
cillations in Fig. 4(c), V 5 2p/Tperiod ' 0.194.

Strongly out-of-phase gratings have a complicated pat-
tern of various instabilities. For instance, Figs. 9(a) and
9(b) display unstable eigenvalues of the matrix problem
(28) for the out-of-phase grating with nnl 5 1 and n0k
5 20.3, and the curve Iout(I in) is shown in Fig. 9(c).
Even lower-transmissive states are instantaneously un-
stable with two real eigenvalues and a pair of complex ei-
genvalues [see Figs. 9(a) and 9(b)]. The unstable eigen-
values merge, disappear, and reappear in a number of
bifurcations for larger values of Iout . However, there ex-
ist at least two unstable growth rates Re(l) . 0 for any
value of the transmitted intensity Iout . Notice from Figs.
7, 8, and 9 that the growth rates become larger with
larger negative values of n0k .

When the constraint (4) is violated, the nonlinear peri-
odic structure is in the multistability regime, as in do-
main III of Fig. 2. In this case, the stationary transmis-
sion regimes are widely unstable for both in-phase and
out-of-phase photonic gratings. Figures 10(a) and 10(b)
show a cascade of unstable eigenvalues for the multi-
stable regime with nnl 5 1.4 and n0k 5 0, and the trans-
mission curve Iout(I in) is shown in Fig. 10(c). The first
positive-slope branch of lower-transmissive states is
stable for Iout , 0.075. The real unstable eigenvalue is
clearly associated with the first negative-slope branch of
transmissive states at 0.075 , Iout , 0.113 [see Figs.
10(a) and 10(c)]. The two complex pairs of unstable ei-
genvalues are associated with the second positive-slope
branch of higher-transmissive states that exists for
0.113 , Iout , 0.188. However, the complex pairs
emerge at Iout ' 0.139, i.e., there is a stability window be-
tween 0.113 , Iout , 0.139 for the highly transmissive
states [see Figs. 10(b) and 10(c)]. These results recover
conclusions of Ref. 8 obtained for the coupled-mode sys-
tem (1)–(2) with n2k 5 0.

Starting with Iout . 0.139, all positive-slope branches
of higher-transmissive states are unstable since the com-
plex eigenvalues do not disappear for larger values of Iout
[see Fig. 10(b)]. Moreover, the number of complex eigen-
values grows with each positive-slope branch, e.g., two
more complex pairs emerge for the third positive-slope
branch of higher-transmissive states at Iout . 0.250 [see
Figs. 10(b) and 10(c)]. The real unstable eigenvalues
match all negative-slope branches of transmissive states
and also some higher-order positive-slope states as well
[see Figs. 10(a) and 10(c)]. Thus we conclude that the
stationary states in the multistable regime are unstable
except for the first positive-slope branch of lower-

Fig. 9. Unstable (a) real and (b) complex eigenvalues versus the
transmitted intensity Iout of the linear matrix problem (28) for
the standardized photonic structure with material parameters
nnl 5 1 and n0k 5 20.3. The input–output transmission char-
acteristics Iout(I in) is shown in (c).
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transmissive states and except for a narrow window for
the second positive-slope branch of higher-transmissive
states. In particular, these results explain the switching
dynamics of the photonic gratings shown in Figs. 5(a) and

Fig. 10. Unstable (a) real and (b) complex eigenvalues versus
the transmitted intensity Iout of the linear matrix problem (28)
for the standardized photonic structure with material param-
eters nnl 5 1.4 and n0k 5 0. The input–output transmission
characteristics Iout(I in) is shown in (c), and it corresponds to
curve III in Fig. 1.
5(b). The stationary regime with Iout 5 0.090 has a
single unstable real eigenvalue [see Fig. 10(a)], and this
instability exhibits a switching of the light transmission
to the stable fundamental state with a smaller value of
the transmitted intensity Iout 5 0.062 [see Fig. 5(a)].

Fig. 11. Unstable (a) real and (b) complex eigenvalues versus
the transmitted intensity Iout of the linear matrix problem (28)
for the standardized photonic structure with material param-
eters nnl 5 1.4 and n0k 5 20.1. The input–output transmission
characteristics Iout(I in) is shown in (c).
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A linear grating added to the nonlinear periodic struc-
ture, when n0k Þ 0, may change stability results de-
scribed above. Figures 11(a) and 11(b) show the unstable
eigenvalues for the out-of-phase grating with nnl 5 1.4
and n0k 5 20.1, when the transmission curve Iout(I in) is
shown in Fig. 11(c). The transmission curve has the first
positive-slope branch of lower-transmissive states ex-
tended up to higher intensities Iout , 0.272. However,
these positive-slope states are still unstable for 0.083
, Iout , 0.272 due to a single pair of complex eigenval-
ues [see Fig. 11(b)]. The rest of the picture in Figs. 11(a)
and 11(b) resembles the case n0k 5 0 in Figs. 10(a) and
10(b). The pattern features real unstable eigenvalues in
narrow intervals of Iout and pairs of complex unstable ei-
genvalues in semi-infinite intervals of Iout . Thus the
out-of-phase linear grating does not improve stability of
lower-transmissive states because of oscillatory instabili-
ties.

We conclude that the all-optical limiting regime is lin-
early stable for in-phase and weakly out-of-phase grat-
ings. Moderate out-of-phase linear gratings are destabi-
lized through complex (Hopf ) bifurcations. Strong out-
of-phase gratings are widely unstable because of local
multistability at small incident intensities. The transi-
tion from the limiting regime to multistability results in
loss of stability for both in-phase and out-of-phase grat-
ings except for the first positive-slope branch of lower-
transmissive states. However, the first positive-slope
branch is also unstable for strong out-of-phase gratings
due to oscillatory bifurcations.

6. DYNAMICS OF LIGHT TRANSMISSION
IN THE PERIODIC STRUCTURE
Here we model the time-dependent response of the non-
linear periodic structure under the incident light wave.
We show that the time-dependent response of the photo-
nic device can be predicted by the number and type of un-
stable eigenvalues in the spectrum of the linear stability
problem. The incident light is modeled by the coupled-
mode equations (1)–(2) with the varying boundary condi-
tion (6):

I in~t ! 5 I0 tanh t, u in~t ! 5 0. (34)

The incident light represents a continuous wave of vary-
ing amplitude that switches monotonically from zero in-
tensity to a constant intensity I0 . The transition hap-
pens during the time interval (Dt) ' 1 in the layer near
the left end of the structure (Dz) ' 1 ! L 5 20. We as-
sume that light waves are initially zero throughout the
structure, i.e., A6(z, 0) 5 0.

If the stationary regime with a constant incident light
intensity I in 5 I0 is linearly stable, we expect that illumi-
nating light at the input end of the structure leads to for-
mation of the stationary-transmission regime inside the
structure. The transition to the stable-stationary regime
is illustrated in Fig. 12 for the photonic grating with nnl
5 1 and n0k 5 0. The photonic structure is in the all-
optical limiting regime, i.e., in the domain I of Fig. 2.
The stability analysis shows no unstable eigenvalues of
the linearized problem. The transmitted intensities are
limited by the value Iout , I lim ' 0.049.
The numerical simulations with the varying boundary
condition (34) for I0 5 0.020 show fast relaxation of the
light waves to the stable stationary regime with I in
5 0.020 and Iout 5 0.018 [see Fig. 12(a)]. The two
curves display transmitted @Iout(t)# and reflected @Iref (t)#
intensities as functions of time t. The constant levels for
Iout and Iref in the stationary-transmission regime with
the same value of I in 5 I0 are plotted by dotted curves.
The incident wave is highly transmissive in the station-
ary regime, i.e., the reflected wave is small.

When the light intensity is increased, e.g., for I0
5 0.2, the same relaxation to the stable stationary re-
gime becomes slowly convergent. The dynamics of light
waves is accompanied by a large-amplitude transient
wave front and with few additional oscillations [see Fig.
12(b)]. The stationary transmission occurs for I in 5 0.2
and Iout 5 0.043. In this case, the reflected-wave inten-
sity Iref is larger than the transmitted-wave intensity
Iout , i.e., the stationary state is lower transmissive.

Fig. 12. Transmitted @Iout(t)# and reflected @Iref (t)# intensities
as functions of time t. The incident intensity I in(t) is given by
Eqs. (34) for (a) I0 5 0.02 and (b) I0 5 0.2. The standardized
photonic structure has the material parameters nnl 5 1 and
n0k 5 0. The dotted curves display constant values of Iout and
Iref for stationary transmission that correspond to the incident
intensity I in 5 I0 .
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The transient oscillations in Fig. 12(b) can be explained
by the largest eigenvalues of the linearized problem,
which have the smallest negative real part and a nonzero
imaginary part. Such eigenvalues do not cross the sta-
bility threshold for the stable structure with nnl 5 1 and
n0k 5 0. However, they are still close to the threshold
Re(l) 5 0, and the negative real part of the largest eigen-
values becomes smaller with larger values of I0 . As a re-
sult, the incident waves of large intensities I0 converge to
the near-limiting stationary regime very slowly, with suf-
ficiently large computational errors.

If the stationary regime becomes unstable, we expect
that the transition induced by the incident wave (34) re-
sults in the nonstationary dynamics. The dynamics de-
pends on the dominant unstable eigenvalues of the linear
stability problem. The out-of-phase photonic structure
with nnl 5 1 and n0k 5 20.15 is in the locally multistable
limiting regime, i.e., in domain II of Fig. 2. The trans-
mitted intensities are limited by the value Iout , I lim
' 0.227. The stationary regimes have real unstable ei-
genvalues for 0.002 , Iout , 0.018 and complex eigenval-
ues for 0.018 , Iout , 0.222 [see Figs. 8(a) and 8(b)].
Therefore only the lower branch of lower-transmissive
states is stable, and the incident waves are unstable for
all intensities: I in . 0.042. The dynamics of unstable
transitions is shown in Figs. 13(a) and 13(b) for the values
I0 5 0.030 (a) and I0 5 0.075 (b).

There are three stationary regimes corresponding to
the incident intensity I0 5 0.030 [see Fig. 8(c)]. The in-
termediate branch is unstable with two real unstable ei-
genvalues [see Fig. 8(a)], and the upper branch is un-
stable with two complex pairs of eigenvalues [see Fig.
8(b)]. As a result, the incident wave selects the lower
stable branch of stationary transmission. The stable
branch has extremely small transmitted intensity Iout
' 0.00057 [see Fig. 13(a)], i.e., the incident wave is
highly reflected for I0 5 0.030. Notice from Fig. 13(a)
that the convergence to the stable stationary regime is os-
cillatory. The oscillatory convergence indicates the pres-
ence of complex eigenvalues l in the linearized problem
with a small but negative real part. These eigenvalues
destabilize the photonic structure with larger intensities
I0 of the incident light.

For larger values of incident intensities, e.g., for I0
5 0.075, no stable lower-transmissive state exists, and
the higher-transmissive state with I in 5 0.075 and Iout
5 0.07 is unstable with two complex pairs of unstable ei-
genvalues. As a result, the incident wave generates non-
stationary transmission accompanied by two-frequency
synchronized oscillations [see Fig. 13(b)]. Notice that for
yet larger values of I0 , one complex pair of unstable ei-
genvalues disappear, and the instability has a single fre-
quency [see Fig. 8(b)]. Then, the response of the photonic
structure to the incident light becomes a one-frequency
high-amplitude oscillation, similar to Fig. 4(c) obtained
for the same structure under the incident light with I in
5 0.124 and Iout 5 0.12.

Similar nonstationary dynamics is observed for the
multistable photonic structures in domain III of Fig. 2.
For example, we consider the multistable structure with
nnl 5 1.4 and n0k 5 0. The stationary regimes are all
unstable for incident intensities I in . 0.152, when the in-
cident intensity exceeds the maximal intensity of the low-
est branch in Fig. 10(c).

The dynamics of unstable transitions is shown in Fig.
14 for I0 5 0.2. The stationary-transmission regime
with I in 5 0.2 and Iout 5 0.148 has two pairs of complex
unstable eigenvalues [see Fig. 10(b)]. As a result, the
transition dynamics results in high-amplitude oscillations
around the unstable stationary-transmission regime [see
Fig. 14(a)]. The oscillations are observed for longer times
with no visible distortions both for transmitted and re-
flected intensities. These oscillations correspond to the
regime of periodic generation of Bragg solitons discussed
in Ref. 11. The Bragg solitons are periodically generated
at the left end of the structure and transmitted to the
right end of the structure, resulting in high-amplitude os-
cillations in Fig. 14(a). The snapshot of the forward and
backward waves is shown in Figs. 14(b) and 14(c). A
single Bragg soliton is clearly seen to move across the
photonic device.

Fig. 13. Transmitted @Iout(t)# and reflected @Iref(t)# intensities
as functions of time t. The incident intensity I in(t) is given by
Eqs. (34) for (a) I0 5 0.030 and (b) I0 5 0.075. The standard-
ized photonic structure has the material parameters nnl 5 1 and
n0k 5 20.15. The dotted curves display constant values of sta-
tionary intensities Iout and Iref , respectively, that correspond to
the incident intensity I in 5 I0 .
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Fig. 14. (a) Transmitted @Iout(t)# and reflected @Iref(t)# intensi-
ties as functions of time t. (b),(c) The intensities of the forward
wave uA1u2 and the backward wave uA2u2 across the photonic de-
vice at the time instances t 5 230, t 5 250, and t 5 260. The
incident intensity I in(t) is given by Eqs. (34) for I0 5 0.2. The
standardized photonic structure has the material parameters
nnl 5 1.4 and n0k 5 0. The dotted curves display stationary in-
tensities and distributions that correspond to the incident inten-
sity I in 5 0.2.
For larger incident intensities I0 , the stationary trans-
mission becomes highly unstable with more pairs of com-
plex eigenvalues [see Fig. 10(b)]. The numerical observa-
tions show the blowup of the light wave intensities that
occurs in the middle of the photonic structure in a finite
time. The blowup profile resembles the Bragg solitons in
Figs. 14(b) and 14(c), but the light intensity of the soliton
grows with no limits, eventually burning the photonic
structure. We do not pursue the blowup phenomenon in
this paper, since such large intensities are highly unlikely
to be used in realistic photonic devices.

We conclude that real and complex unstable eigenval-
ues of the linear stability problem do predict accurately
long-term dynamics of the periodic nonlinear structure il-
luminated by the incident light. When all eigenvalues
are located in the left half-plane of l, the light transmis-
sion relaxes to a stable stationary regime. When un-
stable eigenvalues emerge into the right half-plane of l as
real eigenvalues, the light transmission switches from a
highly transmissive unstable state to the stable lower-
transmissive state, if it exists. When the lower branch
does not exist, the unstable eigenvalues are complex val-
ued, and the light transmission results in nonstationary
dynamics with high-amplitude oscillations and periodic
generation of Bragg solitons. This conclusion generalizes
the results of Ref. 11 obtained for the case n2k 5 0.

Thus the photonic devices have unstable stationary
transmissions in the domains II and III. In particular,
the out-of-phase linear gratings become unstable for nnl
Þ 0. Although the out-of-phase gratings feature the
two-step linear map in the input–output transmission
curve that is useful for many applications, such as logic
functions and signal processing, the light transmission in
the out-of-phase gratings displays complicated nonsta-
tionary dynamics, unless the Kerr nonlinearities are care-
fully managed with zero net-average nonlinearity. In re-
ality, the nonlinearities are affected by temperature
fluctuations, and it is thus very hard to maintain the
stable all-optical limiting regime for the photonic devices.

APPENDIX A: NUMERICAL METHOD FOR
THE TIME-EVOLUTION SYSTEM
(8)–(9)
We start with the system (8)–(9) and replace the deriva-
tive by central differences according to the Crank–
Nicholson method for the wave equation (16). Then we
arrive at the system of difference equations

un,k11 1 r~un11,k11 2 un21,k11! 1 kyn,k11

5 un,k21 2 r~un11,k21 2 un21,k21! 2 kyn,k21 2 Fun,k ,

(A1)
wn,k11 1 r~wn11,k11 2 wn21,k11! 2 kvn,k11

5 wn,k21 2 r~wn11,k21 2 wn21,k21! 1 kvn,k21 1 Fwn,k ,
(A2)

vn,k11 2 r~vn11,k11 2 vn21,k11! 1 kwn,k11

5 vn,k21 1 r~vn11,k21 2 vn21,k21! 2 kwn,k21 2 Fvn,k ,

(A3)
yn,k11 2 r~ yn11,k11 2 yn21,k11! 2 kun,k11

5 yn,k21 1 r~ yn11,k21 2 yn21,k21! 1 kun,k21 1 Fyn,k ,
(A4)
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where

r 5
t

2h
, k 5 tn0k ,

and the nonlinear vectors are computed from the nonlin-
ear functions (10), e.g.,

Fun,k 5 2tfu~un,k , wn,k , vn,k , yn,k!.

The system (A1)–(A4) is set at the interior grid points,
when n 5 1,2 ,..., N. The boundary values uN11,k ,
wN11,k , v0,k , and y0,k are also unknowns in the vectors
(14), and they should be considered separately. The
three-point forward (for v and y at z 5 0) and backward
(for u and w at z 5 L) differences have the same local
truncation error as the central differences used in Eqs.
(A1)–(A4). Using the three-point differences for approxi-
mations of space derivatives in the system (8)–(9) for z
5 0 and z 5 L, we complete the system of difference
equations (A1)–(A4) by four end-point equations:

uN11,k11 1 r~3uN11,k11 2 4uN,k11 1 uN21,k11!

5 uN11,k21 2 r~3uN11,k21 2 4uN,k21 1 uN21,k21!

2 FuN11,k , (A5)

wN11,k11 1 r~3wN11,k11 2 4wN,k11 1 wN21,k11!

5 wN11,k21 2 r~3wN11,k21 2 4wN,k21 1 wN21,k21!

1 FwN11,k , (A6)

v0,k11 2 r~2v2,k11 1 4v1,k11 2 3v0,k11!

5 v0,k21 1 r~2v2,k21 1 4v1,k21 2 3v0,k21!

2 k~w0,k11 1 w0,k21! 2 Fv0,k , (A7)

y0,k11 2 r~2y2,k11 1 4y1,k11 2 3y0,k11!

5 y0,k21 1 r~2y2,k21 1 4y1,k21 2 3y0,k21!

1 k~u0,k11 1 u0,k21! 1 Fy0,k , (A8)

where the boundary conditions (15) compliment the sys-
tem (A7)–(A8). The coupled system (A1)–(A8) can be
transformed to the matrix form (17)–(18) with the coeffi-
cient matrices

A~r ! 5 3
1 r 0 . . . 0 0 0

2r 1 r . . . 0 0 0

0 2r 1 . . . 0 0 0

. . . . . . . . .

0 0 0 . . . 2r 1 r

0 0 0 . . . r 24r 1 1 3r

4 ,

(A9)

B~r ! 5 3
1 1 3r 24r r . . . 0 0 0

r 1 2r . . . 0 0 0

0 r 1 . . . 0 0 0

. . . . . . . . .

0 0 0 . . . r 1 2r

0 0 0 . . . 0 r 1

4 ,

(A10)
I1 5 F 0 1 0 . . . 0 0 0

0 0 1 . . . 0 0 0

. . . . . . . . .

0 0 0 . . . 0 0 1

0 0 0 . . . 0 0 0

G ,

I2 5 F 0 0 0 . . . 0 0 0

1 0 0 . . . 0 0 0

. . . . . . . . .

0 0 0 . . . 1 0 0

0 0 0 . . . 0 1 0

G . (A11)

The right-hand side vectors in Eqs. (17)–(18) are com-
puted as

Huk 5 r~u0,k11 1 u0,k21!e1 2 Fuk , (A12)

Hwk 5 r~w0,k11 1 w0,k21!e1 1 Fwk , (A13)

Hvk 5 2k~w0,k11 1 w0,k21!e1 2 Fvk , (A14)

Hyk 5 k~u0,k11 1 u0,k21!e1 1 Fyk , (A15)

where e1 is the first unit vector in RN11 and Fuk , Fwk ,
Fvk , and Fyk are right-hand-side vectors in RN11 con-
structed from values of Fun,k , Fwn,k , Fvn,k , and Fyn,k
similarly to the vectors uk , wk , vk , and yk in Eqs. (14).

APPENDIX B: NUMERICAL METHOD FOR
THE EIGENVALUE PROBLEM (25)–(26)
The central-difference equations for the system (25)–(26)
have the form

2~un11 2 un21! 2 kyn 2 Fun8 5 gun , (B1)

2~wn11 2 wn21! 1 kvn 1 Fwn8 5 gwn , (B2)

~vn11 2 vn21! 2 kwn 2 Fvn8 5 gvn , (B3)

~ yn11 2 yn21! 1 kun 1 Fyn8 5 gyn , (B4)

where

k 5 2hn0k , g 5 2hl,

and the nonlinear vectors are computed from the nonlin-
ear functions (27), e.g.,

Fun8 5 2hfu8 ~u0n , w0n , v0n , y0n ;un , wn , vn , yn!.

In the system (B1)–(B4), we have dropped the subindex of
the functions u1 , w1 , v1 , and y1 compared with the sys-
tem (25)–(26). The system (B1)–(B4) should be compli-
mented by four additional equations for boundary ele-
ments. We use again the three-point forward difference
for v and y at z 5 0 and the three-point backward differ-
ence for u and w at z 5 L. Then, the end-point equa-
tions are derived as
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2~3uN11 2 4uN 1 uN21! 2 FuN118 5 guN11 , (B5)

2~3wN11 2 4wN 1 wN21! 1 FwN118 5 gwN11 , (B6)

~23v0 1 4v1 2 v2! 2 Fv08 5 gv0 , (B7)

~23y0 1 4y1 2 y2! 1 Fy08 5 gy0 , (B8)

where we have used the zero boundary conditions (24) for
u0 , w0 , vN11 , and yN11 . The coupled system (B1)–(B8)
can be transformed to the matrix form (28) with the coef-
ficient matrices

A` 5 3
0 21 0 . . . 0 0 0

1 0 21 . . . 0 0 0

0 1 0 . . . 0 0 0

. . . . . . . . .

0 0 0 . . . 1 0 21

0 0 0 . . . 21 4 23

4 ,

(B9)

B` 5 3
23 4 21 . . . 0 0 0

21 0 1 . . . 0 0 0

0 21 0 . . . 0 0 0

. . . . . . . . .

0 0 0 . . . 21 0 1

0 0 0 . . . 0 21 0

4 .

(B10)
In the system (28), the coefficient matrices I6 are defined
in Eqs. (A11) of Appendix A, and the matrix U is computed
as

U 5 F 2Fu8

Fy8

Fw8

2Fv8

G , (B11)
where Fu8 , Fw8 , Fv8 , and Fy8 are now (N 1 1) 3 4(N
1 1) matrices that are computed from values of Fun8 ,
Fwn8 , Fvn8 , and Fyn8 .

REFERENCES
1. D. Pelinovsky, J. Sears, L. Brzozowski, and E. H. Sargent,

‘‘Stable all-optical limiting in nonlinear periodic structures.
I. Analysis,’’ J. Opt. Soc. Am. B 19, 43–53 (2002).

2. L. Brzozowski and E. H. Sargent, ‘‘Nonlinear distributed
feedback structures as passive optical limiters,’’ J. Opt. Soc.
Am. B 17, 1360–1365 (2000).

3. C. M. de Sterke and J. E. Sipe, ‘‘Gap solitons,’’ Prog. Opt.
33, 203–260 (1994).

4. H. G. Winful, J. H. Marburger, and E. Garmire, ‘‘Theory of
bistability in nonlinear distributed feedback structure,’’
Appl. Phys. Lett. 35, 379–381 (1979).

5. H. M. Gibbs, Optical Bistability: Controlling Light with
Light (Academic, New York, 1985).

6. W. Chen and D. L. Mills, ‘‘Optical response of nonlinear
multilayer structures: bilayers and superlattices,’’ Phys.
Rev. B 36, 6269–6278 (1987).

7. J. He and M. Cada, ‘‘Optical bistability in semiconductor
periodic structures,’’ IEEE J. Quantum Electron. 27, 1182–
1188 (1991).

8. C. M. de Sterke, ‘‘Stability analysis of nonlinear periodic
media,’’ Phys. Rev. A 45, 8252–8258 (1992).

9. Yu. N. Ovchinnikov, ‘‘Stability problem in nonlinear wave
propagation,’’ JETP 87, 807–813 (1998).

10. H. G. Winful and G. D. Cooperman, ‘‘Self-pulsing and chaos
in distributed feedback bistable optical devices,’’ Appl.
Phys. Lett. 40, 298–300 (1982).

11. C. M. de Sterke and J. E. Sipe, ‘‘Switching dynamics of fi-
nite periodic nonlinear media: a numerical study,’’ Phys.
Rev. A 42, 2858–2869 (1990).

12. G. P. Agrawal, Nonlinear Fiber Optic (Academic, San Diego,
1989), Chap. 7.

13. C. M. de Sterke, K. R. Jackson, and B. D. Robert, ‘‘Nonlin-
ear coupled-mode equations on a finite interval: a numeri-
cal procedure,’’ J. Opt. Soc. Am. B 8, 403–412 (1991).


