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Optimal rotary control of the cylinder wake in the laminar regime
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In this paper we develop the Optimal Control Approach to the rotary control of the cylinder wake.
We minimize the functional which represents the sum of the work needed to resist the drag force and
the work needed to control the flow, where the rotation tgtg is the control variable. Sensitivity

of the functional to control is determined using the adjoint equations. We solve them in the
“vorticity” form, which is a novel approach and leads to computational advantages. Simulations
performed aRe=75 andRe= 150 reveal systematic decrease of the total power and drag achieved
using a very small amount of control effort. We investigate the effect of the optimization horizon on
the performance of the algorithm and the correlation of the optimal controls with the changes of the
flow pattern. The algorithm was also applied to the control of the subcritical floReat40,
however, no drag reduction was achieved in this case. Based on this, limits of the performance of
the algorithm are discussed. 8002 American Institute of Physic§DOI: 10.1063/1.1476671

I. INTRODUCTION ponent of the force, using the smallest possible control effort.
Most theoretical considerations discussed in this study are
The general objective of flow control is to design a smallnot restricted by the Reynolds number. However, all compu-
[on the order 0fO(e) ] input to the system, i.e., theontrol,  tational investigations presented here will concern the two-
that will result in a significanfon the order oO(1)] output  dimensional laminar regime. Given the well-known limita-
with desired properties. Given the nonlinear character of thgions of the 2D model for the description of the wake flow
governing equations and the chaotic nature of theirsolutionqe_g_, Refs. 1 and)2 our simulations are restricted to the
the problem of controlling the fluid flow is highly nontrivial plane case witiRe=75 andRe= 150. ForRe<180 cylinder
and does not admit general and uniformly valid solutionsyyake flows are known to remain two-dimensiof2D) (see,
Many different approaches have been proposed and hayeg  williamson in Ref. B This allows us to use 2D simu-
achieved varying degrees of success. In the present invesiiions in this regime. Additional simulations are also per-
gation we are interested in the fundamental problem of conggrmed for the subcritical case witRe= 40.
trolling the nonstationary wake behind the circular cylinder. From the physical point of view, our primary motivation
This flow configuration is regarded as a prototype of sepaggmes from the laboratory experiments by Tokumaru and
rated flows and at the same time is sufficiently simple tOhimotakis? They showed that by using a very simple har-
admit numerlcal solution at a rea;onable (_:OSt‘ It IS, thereforey onic rotation of the obstacle one can obtain significant drag
a convenient testbed for developing algorithms which can b?eduction reaching 80% ®e=15000. This effect was fur-
Iate_r applied to more complgx_c_onfigurations. The flow d_o'ther investigated by Shields in Ref. 5 and Lu and Sato in Ref.
main () is assumed to be infinite. The oncoming flow IS 6 In recent investigations Het al/ and Homesctet al®
applied the tools of the Optimal Control Theory to optimize

uniform at infinity and has velocity,, (see Fig. 1. Wake
at e harmonic control of the wake. In a related styBgf. 9

flows are characterized by the Reynolds number defined
Re=|V..|D/v, wherev is the kinematic viscosity of the fluid we however obtained evidence showing thatRe=— 150 the
harmonic rotary control is energetically inefficient, i.e., the

andD is the cylinder diameter. Control is applied in the form

of the rotary motion of the obstacle and is characterized by ntrol power far exceeds th inin the dr wer. In th
the instantaneous rotation rapét). It is equivalent to speci- control power far exceeds the ga € drag power. N

fying the tangential boundary velocity.(t). By controlling present investigation we seek to optimize the rotary motion

the flow we seek to reduce the drag, i.e., the horizontal comPf the obstacle so as to make the control more efficient from
B the point of view of energy budget. We are interested in

5 assessing the inherent capabilities and limitations of such an
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Y where V is the velocity field,p is pressure, angk is the
coefficient of viscosity. The system is supplemented with the
boundary conditiond(¢) representing the motion of the
boundary as a function of the rotation rage V., represent-

VM Q ing the free stream at infinity, and the initial conditigg. In
T, all the simulations reported here the initial conditidg will

V() / correspond to the developed wake flow with saturated vortex

/ ™~ shedding. When one is studying external flows, it is often
more convenient to use the vorticitie., the nonprimitive

i, ® o form of the systentl). It is obtained by taking the curl of the
\ Navier—Stokes system and in 2De., whenV=[u,v,0]) is
expressed as

D
Jw
—+(V-V)o=pAo,
ot
_&v au &u+¢9v_0
CTox oy ox o ay @)

FIG. 1. Flow configuration with control.
V|t=0:V0 in Q,
_ _ _ V=b(¢) on Ty, V—=V, for |x|—c,
11, or acoustic actuation, e.g., Roussopoulos in Ref. 12. In all

of these works the authors relied on intuition to identify the . )
critical physical mechanisms which were then controlled. Anwherem denotes vorticity. In the case of multiconnected flow

alternative approach consists in extracting a low-dimensiondfomains this system must be supplemented by the following
approximation of the system, the so-called Reduced OrdefonStraint on the vorticity production on the boundary of
Model, which is subjected to control. In the context of wake€VE"Y “hole” in the flow domain(for derivation see, for ex-
flows these concepts were developed in the works by Gre@MPle, the study by Gunzburger and PetefSon

hamet al,*** Chernyshenkd® Cortelezzi*® and Cortelezzi

do, (3

etall’ L dw L

For the theoretical part, the present investigation builds '“fo n do= J; {E'TJF(V'n)“’
on the study by Abergel and Tem&hwhich was the first
formulation of a flow control problem in terms of the modern
Optimal Control Theory, an extension of the seminal work
by Lions® This approach was first applied in the suboptimal

ing, i.e., with the vanishin imization horizon h . N .
setting, .e., with the vanishing optimization horizon, to t efrom the velocity and vorticity fields, is single valued. The

control of the stochastic Burgers equation by Chbal. in ) . ) -
Ref. 20 and then to the contr%l of thqe turbulext channel ﬂOWadvantage of using formulatiori®) and(3) is that it is based

by Leeet al.in Ref. 21. The finite horizon optimal control of ggn? rg;realgcjl'Zgge\éa{fl\)llgggltcné)ﬁ;ts rseusps%?g I?r?.:a.ssl ar
the channel flow was then systematically investigated b pact, PP y P ' P

Bewley et al. in Ref. 22. As regards the wake flow, an Opti_x{icularly convenient when one is studying flows in infinite

. . ... _domains.
mal control approach was considered theoretically by Sritha- . . .
P vy The paper is organized as follows: in the next two sec-

ran in Ref. 23 and computationally by Min and CHoithe . i . . )
latter study, however, concerns the blowing-and-suction typ |on? we c_)ut'l,me the Opt|ma}l _Control Algorlthm and dgrlve
e “vorticity” form of the adjoint equations, then we briefly

of control in the suboptimal settingTherefore, the main . o
objective of the present study is to develop an optimal Ccmgescrlbe the Vortex Method which is used here to solve the

trol approach for drag minimization in the cylinder wake in hydrodynamic equations and also the adjoint system; in Sec.

the case when the rotary motion of the obstacle is the co Y we present and discuss the results of the computations;

trol. Furthermore, the formalism is extended and recast irrtInal conclusions come in Sec. VI. In the Appendix we

terms of the nonprimitive variables, i.e., velocity—vorticity, phrese;t some technical details concerning the derivation of
instead of velocity—pressure. the adjoint system.

The flow of viscous incompressible fluid is governed by
the Navier—Stokes system

where the integrals are taken along the contour perimeter
[O;L]. This constraint ensures that the fid&d- V., has finite
kinetic energy and that pressure, when recoverpdsteriori

II. OPTIMAL CONTROL ALGORITHM

oV
gt TV VV==Vptpav, The starting point is the formulation of the specific func-

V.V=0, tional that will be minimized. In our case it represents the

i (1) balance over the time intervgD;T] of the work that has to
Vl=o=Vo in 0, be done against the drag force and the work needed to con-
V=b(¢) on Ty, V=V, for |x|—ce, trol the flow
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_ 1 (T([power related t of the functional(5) cannot be ensured and the optimum is
Je)= Ef [ the drag forceF only local. The Geeaux differential represents the linear part
0 of the functional increment that results from applying the
power needed perturbationh to control and evaluated in the neighborhood
control the ﬂovﬁd . 4)  of the state{Vo(¢);po(@)}. For the case of the functional
(5), the Gaeaux differential takes the form

The rotation ratep(t) of the cylinder is the contralFig. 1),

therefore, the energy needed to control the flow is introduced
in the form of the moment of forces, the torque, applied to
the cylinder. Here we do not take into account the moment of ] )
inertia of the cylinder, as it is entirely material-dependent Lo(e,Xr)+ V. ]+[po(@)n—pun
and therefore can be arbitrary. Consequently, using the sur-

_ 1 (T B
J'(soih):Efo ﬁ {la(h)n—pun-D(w(h))]

face force density(¢), the above relation can be expressed ‘D(Vo(£))]- (exn)h}dodt, @)
as where the quantitiegw(h);q(h)} are the solution of the
. Navier—Stokes systeifi) linearized about the sta{&/,; po}
()= EJ 36 {f(@) - Vo + [rXf($)]- (@&, }dodt (see f{he Apper}dix for detajlslt should be obsgrved that for
2Jo Jr, the circular cylinder the vectors andr are collinear, hence

n-(e,Xr)=0 and the pressure term i{7) drops out. The
1 (7 R . . /
= _f # {f(@)-[p(ex 1)+ V. ]}dodt Gaeaux differential will now be used to extract the func-
2Jo Jr, tional gradientVJ according toJ’(<;o;h)=(VJ,h),_2([OVT]).
However, the expressidi) does not have a form convenient

1 (T -
= EJ 3£ {{p(¢)n—un-D(V(¢))] for this purpose, as the control perturbatiorenters implic-
0 Jlo itly through the solution of the linearized problem. The now
To(e,xn+ V., ]Hdadt, (5)  Classical approactsee Lions,’ Abergel and Temarff, and

) . Bewleyet al2®) consists in using the adjoint operatét and
where all=the hydrodynamic quantities depend on the control,q 5ss0ciated adjoint stalte* ;q*} to reexpress7) so that
¢. HereD(V)=[VV+(VV)] is the rate-of-strain tensor of the control perturbatioh appears as a factor. This yields
the fieldV ande, the versor of the axis (normal to the flow T
plane. J’(Ep;h)=J VJ(t)hdt

The optimal controle,,; and the related optimal state 0
{IV(@opd i P(@op)} correspond to the minimum of the func- 1T
tional (5) and are therefore characterized by the vanishing of :_j é {uRn. D(wW*)- 7
its Gateaux differential 2Jo Jrg

J'(@opt:h) =0, (6) +un-D(Vo(p))- (e,x1)}thdodt, (8)

whereh represents an arbitrary direction in the space of conwhereR is the cylinder radius ané the unit tangent vector,
trols in which the differential is computed. We note tf@tis  whereasw* is a solution of the system adjoint to the Navier—
only a necessary, but not sufficient, condition for optimality Stokes equations linearized about the s{atg;p,}. The ad-
and, since the governing equatic) is nonlinear, convexity joint system has the form

w* Iw* T
||| T Ve LW (YW T wAwt Vgt |
q* —-V.w 0
wi-t=0 in Q, (9)

w*=rx(pe)+V, on Ty, w*—0 for |x|—ce.

For complete derivation we refer the reader to the Appendixadvection-diffusion equatiofthis substitution, however, re-
The functional setting and issues related to the existence aferses the field/y in which advection takes plageThe ad-
solutions for a very similar problem were addressed in detaijoint system(9) involves the primal fieldv, as coefficients

by Fursikovet al.in Ref. 27. Here we note th49) is in fact  and is forced through the boundary conditions corresponding
aterminal value problemi.e., it has to be marched backward to the quantities measured by the functio@l. Applying

in time. The system is nevertheless well-posed, as using th&e identityd’ (¢;h) =(VJ,h)__ 01 to (8) we can now ex-
substitutiont=T— 7 we arrive at a problem similar to the tract the functional gradient as
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Vi i Rfﬁ 0 _((VJi_VJi—l),VJi) .
—2M Ty Bi_ (VJI_l,VJI_l) . ( )
[B(W)+D(Vo( op))]- mdor We remind thaty' 7%, &', andy; are all functions of time,
, but the corresponding notation is suppressed here for brevity.
_ %MRZJ' [(5214r s*)(—sin(26)) The vglge.of t.he parameter; is gdjust_eq in the course pf a
0 line minimization procedure which minimizes the functional

0 . % along the descent direction. For this we use the Brent's
+(S1pHS1,)c0426)]d0, (10 method (see Pressetal?®) combining the golden section

wheres?,, s%,, s¥,, ands¥, are the components of the rate- Search with parabolic interpolation. Such an approach en-

of-strain tensor for the primal and the adjoint fielﬂ(vo) sures robustness in the initial bracketing of the minimum,
andli(w*) respectively. Thus- VJ(t) represents the direc- performed as the golden section search, with fast conver-

tion in which the control corresponding to the Stategence when parabolic interpolation takes over. As will be-

[Vo(#):Po()} should be updated in order to decrease thecome apparent later on, line minimization involves a trade-

. o ) off between accuracy and the number of flow evaluations
functional(5). Upon multiplying the gradier¥ J(t) by some (they account for the major part of the overall computational
h(t) and integrating ovefO;T], we obtain the first-order Y jor p P

approximation to the change of the functional due to thecosi). For nearly quadratic functionals the Conjugate Gradi-

. - . nt Method is known re f nvergen much
perturbatiorh. Therefore, the adjoint sta{ev* ;q* } admits a ent Method is nown to assure fastest convergence, muc
. . . c . better than the simple steepest descent method. Iterations are
clear physical interpretation—the adjoint strain on the

boundary carries information about the sensitivity of theterminated when in a given number of functional evaluations

dary . : . Y (usually 4 to 5 the updated control does not decrease the
functional (5) to the given type of forcing. Evidently, apart . . L

S functional. This may also happen when the initial guess for

from the adjoint fields, to computeJ(t) we also need the «; falls outside the validity range of the linear approximation
primal state{Vy(¢);po(¢)} at which the gradient is evalu- ' y rang bp

Lo g o the functional increment given by the ©®aux differential.
ated. We remark that the above derivation is fairly genera o ) . S
. . .In principle, the extent of this range is not knownpriori
and so far we have not introduced any assumptions restrict- . . .
. . . and may be different for problems on different optimization
ing the flow to two dimensions.

: . . . intervals. Con ntly, in order nsure rapid convergen
Now an iterative gradient procedure will be presented tervals. Consequently, in order to ensure rapid convergence

which can be used to find the optimal contigly and the of line minimization in all the investigated configurations,

corresponding optimal StateV(#on):p(eay)} N the time the initial guess fore; is adjusted by trial and error. We
. b ) 9 op Pop: P{@opt) . emphasize that this is done to enhance performance without
interval [0;T]. First, we choose some initial guegs for

. . . compromising accuracy and in principle, when the number
control (for instancee!=0) and then sequentially compute P g y P b

the functional gradienV J(t) and update the time-dependent of available flow evaluations is large, the optimglcan be

: SN . found starting from any sufficiently small initial guess.
control accordingly. This involves the following stefisere 9 y st y 9 S
L L ; The procedure described above allows us to minimize
the superscripts denote the consecutive iterations

the functional over the optimization interv@l Ideally, one
(1) solve the full nonlinear Navier—Stokes system in orderwould wish to extendr so as to cover the whole time-span
to determine{Vy(¢');po(¢')} around which lineariza- over which flow control is attempted. This would, however,

tion is made; result in an intractable computational task. Even more impor-
(2) solve(9) for the adjoint statéw*';q*'} (in the neighbor- tantly, as reported by Bewlegt al,?* the problem may for

hood of {Vo(&");po(¢)}); long T become strongly nonconvex and have many local
(3) use {Vo(&");po(&)} and {w*';q*'} to determine the minima. Consequently, optimization must be independently

functional gradien¥J'(t) on the interva[0:T]; performed over a sequence of shorter intervals resulting in an

(4) use_VJi(t) to update the control according to "(t) approach referred to geecewise optimalThe state reached
=o' (t)—a;y;(VJI(1)), whereq; is some properly tuned by the optimized flow at the end of a given interval is taken

descent parameter angl is the descent direction; as the starting point for optimization on the following inter-
(5) iterate (1)—(4) until convergence, i.e., untVJ'(t)=0  val. Of course, optimal controls determined separately on a
attains in some approximate sense. sequence of intervals with length do notcombine into a

globally optimal control on the whole optimization time-
Now it must be explained how the gradient information span. Certain general properties of the piecewise optimal
VJ'is used to determine the descent directipn Guided by  control were studied by Heinkenschld$svho showed that
Bewley et al,”” we use the Polak—Ribiere version of the the problem of computing piecewise optimal controls on ad-
Conjugate Gradient Algorithnisee Polaf). In every itera-  jacent intervals is related to the forward sweep of the Gauss—
tion the control is updated according to Seidel method for the solution of the related linear algebraic
(11) problem which has block structure. The piecewise optimal
control approach to the 2D velocity tracking problem was
where y; represents the conjugate direction given by addressed by Hou and Yrwho proved that the rate of the
i " functional decrease is independent of the lengtlof the
N=VI=Bivien, =V (12 single optimization horizon. On the other hand, Bewley
with B; standing for the “momentum” parameter et al?? showed computational evidence that the effectiveness

éDHl:(.Pi_ai')’i,
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of the control increases as the optimization horizon is ex- 5% W} [No, Vo,
tended until a certain value df is reached beyond which it ————(Vo-V)wi—uAwx+2 +
; ot ay \ ox ay
does not improve anymore. Further below we address these
issues in the present problem. Nox [ Wy Iwy
+ =0

ax \ Ix ay '

IIl. “VORTICITY” FORM OF THE ADJOINT EQUATIONS A IWy N Wy _o (16)
PATTox T oy ax ay

As discussed in the Introduction, we choose to solve the
hydrodynamic equationél) in the vorticity form (2). Itis w*=-g on Ty, w*—0 for |x|—oe,
natural to apply the same solution method and the same, )
solver to the adjoint equations formulated above. To this end" i=r=0 in 0,
it is necessary to derive the “vorticity” form of the system wherew* =[w} ,w;‘ ,0]. The sourcedi.e., the last term in
(9). We use the term *“vorticity” in quotes, because this the 2D vorticity equation above can be expressed using com-
quantity is the curl of a field which is not, strictly speaking, ponents of the rate-of-strain tensors of the primal and the
the actual velocity field. Since this is a novel approach, weadjoint field ass?;s*,— s¥;s%,.
present it here first for the complete 3D system, and then As was the case of the Navier—Stokes system, the ad-
specify the derivation to the 2D case. We take the curl of thgoint “pressure” can be determined posteriori from the
first element in the expression correspondindltov* in (9)  Poisson equation obtained by taking the divergence of the
and immediately notice that the “pressure” term drops outmomentum adjoint equatiori9). After some elementary
and that the curl operator commutes with both the time detransformations this yields
rivative and the Laplacian. As regards the “advection” term, = ] N T *
we have the followinghere we have to use index notation AQ*=VVo:[VW* + (VW) 1]+ Vo pAwy
for vector operations d

Vgt = W
[VX{Vy- [Vw*+(Vw*) T}, (n-V)g*=n-| -

-+ Vo [VW* +(VW*)T]— wAw*

r
17

d owl ow}
T Emkj Vo ax ox. Similarly to the vorticity equatiort2), in multiconnected do-
k ! J mains systemg15) and (16) must be complemented with
Vg, é'wj‘ ow’¥ constraints on “vorticity” production on the boundary. They
TEmki o\ Tox Ix are obtained by projecting the momentum adjoint equation
k i j . . . . .
(9) on the directions tangential to the boundary, integrating
a j* Pwk along the perimeter and requiring that there be no jump in
+emVoi Er +teniVoi ox 9% pressure. In 2D this yields
. . . S S dwn IW*
=V -is -dw—j-l-s -dVOi il + i (14 ® § AdS:_ § ( ).Tds
O gx, "k gx, UMM gx, \ ox; ox; |- ro 9N rol ot
(Vo -;)wj 2dual{VVvy- [va* +(vwE Ty

J
+ f [[(VO-V)W*]'T-FW*—VO dS
Iy as

Here w) =V XWwW* is the adjoint “vorticity,” [],, denotes (18)
the mth component of a given vector ang,; is the Levi—

Civita alternating tensor. The vector dual to a tensor isThis, together with(16) and (17), constitutes an equivalent
defined as[dualA];=3eAjx. In the above the term formulation of the adjoint syster(9) in 2D.

emkjVoi (azwi*/ax,- dxy) vanishes due to symmetry of the ten-

sor with the second derivatives of the quantitj . Conse-

quently, the vorticity adjoint equation takes the form IV. NUMERICAL SIMULATIONS
_ Jw) (Ve V) oo — uA e All the simulations presented in this study are performed
i~ Vo Ve~ uldwy with the use of the Vortex Method. This is a Lagrangian
. T approach to solving the 2D vorticity equati¢?). The main
+2dua{VVy- [VW* +(Vw*)']}=0, idea consists in approximating the vorticity field using an
W =VXW*, V.w*=0, (15) un;tructured supgrposnmn of vort|.C|ty parucle; vvﬁh pre-
scribed core functions. The system is advanced in time using
w*=—g on Ty, w*—0 for [x|—o, viscous splitting which means that the advection and diffu-

sion part of(2) are solved independently during one time
step. Every particle, called theortex bloh moves in the

The functiong specifying the boundary condition is given in velocity field induced by all other particles and comple-
the Appendix[Eg. (A8)]. In the plane 2D case the above mented with some potential contribution. Our Vortex Method
system reduces taufy = w€e,) uses the second-order accurate Gaussian core functions com-

Wli—t=0 in Q.
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bined with the second-order time splitting scheme. ExhausIABLE I. Numericgl parame_ters used in the sim_ulations at differ_ent Rey-
tive description of the implementation together with VariOUSnOIdS numberfe. Time step is denotedt, blob radiusr, and approximate

. . number of vortex bloby, .
benchmarks is presented in Refs. 9 and 32. b

One of the novelties of this paper is the derivation and Re At b Ny (X 10%)
the solution of the_ vorticity” form (16) of the _adqunt sys- 20 0.05 0.0278 150
tem (9). Now we give some remarks concerning its solution 75 0.05 0.0222 200
using the Vortex Method. The systefh6) constitutes a ter- 150 0.05 0.0178 300

minal value problem, however, using the substitutienT

— 7 we obtain an initial value problem for the advection—
diffusion equation with a source term. It can be marchedeached at the end of an interval is taken as the starting point
forward in the timer, i.e., backward in the “physical” time for optimization on the following interval. Our investigations

t. After this substitution, the adjoint syste(6) is solved are performed at the Reynolds numbers of 75 and 150 which
using essentially the same method as the primal sy¢&m allows us to see how the algorithm handles flows character-
The few modifications are addressed below. Advection in thézed by different degrees of supercriticality. We also make an
adjoint systenm(16) takes place in the velocity fieNd,, i.e.,  attempt at controlling the stationary flow Rie=40. This is

the solution of the Navier—Stokes system around which théntended to address the question whether the basic flow, i.e.,
linearization is performed at a given iteration. However, as ahe steady symmetric state, constitutes the limit of perfor-
result of the above substitution, the sign of the fislglis  mance at a giveRe. In Table | we summarize the numerical
reversed, and therefore, the adjoint flow develops in the diparametergtime stepAt, blob radius, and the approximate
rection opposite to the primal Navier—Stokes flow. The ad-number of vorticedN,,) used in the simulations of the flows
joint “vorticity” equation (16) differs from the vorticity at different Reynolds numbers. At a givéte, flows with
equation(2) also in that it has the source terfirc=s),s}, different optimization horizons as well as the adjoint prob-
+s¥,89,. Apart from diffusion, this is the second mechanismlem are computed with the same numerical parameters. Next,
which changes the strengths of the particles. The source terin Table || we summarize the parameters of the control in the
is evaluated at the centers of the particles and then the raifferent cases. Flows &e=40, 75 and 150 are labeled
sulting circulation updates are computed. When the particld,, B,, andC,, respectively, with the subscripi repre-
(i.e., Lagrangianrepresentation is used, the strain fiefds  senting to the length of the optimization horizon. Hereafter
ands;, have essentially the same localization as the vorticitythese symbols will be used to refer to the particular con-
field w. This means that the source ter@rc practically trolled flows. In the table we give the lengths of the optimi-
vanishes away from the support of both the primal and thezation horizonsI and their ratios to the length of the natural
adjoint vorticity, and therefore, new circulation is not createdvortex shedding period equal to 6.9 and 5.Ra=75 and
there. Consequently, the source terms modifies the adjoirRe=150, respectively. For the steady flow Re=40 this
“vorticity” field via update of the strengths of the existing quantity is obviously indeterminate. We also show the norms
particles only. For comparable sizes, the computational coﬂﬁpopt(t)lle([o,T]) of the optimal controls which give an idea
of the adjoint problem is slightly larger than that of the pri- about their “intensity.” The control is switched on at the
mal. This is because the adjoint solver must handle twdnstantt,=100 for Re=40, att,=75 for Re=75 and att,
fields, i.e., the primalin which advection takes plagend =50 for Re=150. Using the Vortex Method, the steady sub-
the dual, and must also account for the source term. Nevecritical flow atRe=40 is computed as the limit correspond-
theless, in practice the length of a single optimization hori-

zonT is significantly shorter than the total time for which the TABLE II. Parameters of the control algorithii:is the length of the opti-
flow is computed. Owing to the ever-expanding character Ofnizatiqn hori_zon andT/‘TVs its ‘ratio to the Ie_ngth of the natural vortex
the Lagrangian mesh, the computational time per time step ig;ﬁﬂg'lng period at a giveRe, || ¢op(!) 2o is the norm of the optimal
proportional to the length of the interval over which we need

to calculate the solution. Therefore, in our problem the sup- T
port of the adjoint “vorticity” is much smaller than of the Re T Tos loop(t)l. 2
primal vorticity and, consequently, the size of the adjoint
problem is usually much smaller than that of the primal. This 24 28 g'g g'gig
is an advantage of using the “vorticity” form of the momen- A2 40 6.0 0.040
tum adjoint equations. B, 75 1.0 0.15 0.032
B, 75 2.0 0.29 0.040
Bs 75 3.0 0.44 0.041
V. RESULTS OF THE OPTIMAL CONTROL B, 75 4.0 0.58 0.042
: . Bs 75 5.0 0.73 0.039
In this section we present and analyze the results of the g’ 75 6.0 0.87 0.041
simulations using the optimal control algorithm. In all cases ¢, 150 1.0 0.18 0.069
control is applied to the wake flow with developed vortex C, 150 2.0 0.36 0.089
shedding. We briefly recall here that, in the spirit of the  Cs 150 3.0 0.54 0.076
piecewise linear control, the whole optimization time-span is g“ 128 g'g g';i 8'?1141,
split into several intervals with the same length. Optimiza- Cz 150 6.0 108 0123

tion is then performed on each of these and the flow state
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(a) Total power, Re = 75. (b) Total power, Re = 150.

FIG. 2. The total poweP in the controlled flows with different optimization horizons and in the uncontrolled flovi&eat 75 (a) and Re=150 (b).

ing tot—o0 of the unsteady flow instantaneously acceleratecand the flows with no control. We see that, apart from the
from rest. In such case &= 100 all the transients related to cases with the shortest optimization horizgBg and C,),
the instantaneous start are already sufficiently small. Convethe total power is decreased for both valuesRd This
gence of the optimal control algorithm was usually achievectonfirms the effectiveness of the algorithm. Evidently, reduc-
within 2 to 3 iterations. Every iteration required first solution tion is greater for longer optimization horizons. Rte=75
of the Navier—Stokes system forward in time, then solutionthe total power is pushed down to a lower level around
of the adjoint problem backward in time and finally a few which it stabilizes. AtRe=150 the total power oscillates
(usually 5—7 evaluations of the functional, each of them around new values lower than in the uncontrolled flow. In
involving solution of the Navier—Stokes system on the opti-Fig. 3 we present the time series of the control power.
mization interval. As explained above, the computationaMWe see that they are intermittent with occasional excursions
cost of the adjoint problem is usually slightly smaller thanto negative values. Spikes observed in Fig. 3 are related to
for the primal problem, nevertheless the overall cost of thesharp movements of the obstacle. In absolute terms, the re-
optimization procedure is comparable to 12—-20 solutions ofluction of the total power aRe=75 was smaller than at
the Navier—Stokes system on the optimization interval. BeRe=150 by a factor of about two. So was the control power
low we first proceed to discuss the control of the unsteadyhich atRe=75 was smaller than &e= 150 by a factor of
flows atRe=75 andRe= 150 and then of the steady flow at about five.
Re=40. Next in Fig. 4 we present the temporal evolution of the
The quantity which we in principle seek to minimize is drag coefficienty, the quantity which is of greatest interest
the sum of the work done against the drag force and the worla most practical implementations. Its temporal behavior is in
needed to control the flow. In Fig. 2 we present the temporahll cases very similar to the behavior of the total power
evolution of the total poweP=Fp-|V.|+M - ¢ for flows at  which is due to the very low lever of the control poweg .
Re=75 andRe=150 with different optimization horizons In Fig. 4 we also indicate the drag values obtained in the
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(a) Control power, Re = 75. (b) Control power, Re = 150.

FIG. 3. The control poweP in the controlled flows with different optimization horizonsRe= 75 (a) andRe= 150 (b).
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(a) Drag coefficient, Re = 75. (b) Drag coefficient, Re = 150.

FIG. 4. The drag coefficierty in the controlled flows with different optimization horizons and in the uncontrolled flowkeat75 (a) andRe= 150 (b). The
values of drag in the basic flows are also indicated.

unstable, steady, symmetric states., thebasic flow$ at the  rithm increases as we extend and thereby look farther
sameRe. In the flow atRe=75 with the longest optimiza- ahead while optimizing the flow. However, when the charac-
tion horizonT=6.0 the drag is driven down to about 93% of teristic time scale of vortex shedding is reached, further ex-
its value in the uncontrolled flow. FdRe=150 andT=6.0  tension of the optimization horizoh does not bring in sig-
drag oscillates at about 85% of its original value. nificantly new information, and therefore, the algorithm does
For both values oRe the amount of the sustained drag not perform any better. We note that this second regime is
decrease grows as the optimization horizon is extended arzbnsistent with the theoretical predictions of Hou and3an
reaches maximum at values bfcomparable to the length of mentioned earlier in Sec. Il.
the vortex shedding period. As the results for the cadsgs As shown by Protas and Wesfreid in Ref. 9, in the su-
Cs, and Cgz show, longer optimization horizons primarily percritical wake flow the mean drag consists of the two con-
reduce the amplitude of oscillations around the new values dfibutions: The drag of thebasic flow (i.e., the unstable,
the mean drag. Our additional investigatiomot reported steady, symmetric solutiorwhich at a givenRe remains
herg indicate that extension of the optimization horizon be-fixed and the drag of theean flow correctionwhich is due
yond the natural vortex shedding period does not improveo the presence of the vortex shedding and can be affected by
effectiveness of the control anymore. Similar behavior of thea suitable modification of how the vortices are created and
optimal control algorithm with respect to the length of the shed. As the Reynolds number increases, the relative contri-
optimization horizon was observed by Bewleyal. in Ref.  bution of the oscillatory part of the flow to drag becomes
22 for the case of the turbulent channel flow. We propose thenore significant. In Fig. 4 we marked the values of drag in
following simple rationale to explain this behavior—for in- the corresponding basic flows, so that the intervals above
termediate values GfF, i.e., smaller than some characteristic them indicate the drag related to the rided—von Kaman
time scale of the phenomendthe natural vortex shedding vortices. We note that &e=75 and forT=6.0 the control
period in the present stuglythe effectiveness of the algo- is able to annihilate about 62% of the drag related to vortex
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{(a) Optimal controls, Re = 75. (b) Optimal controls, Re = 150.

FIG. 5. The optimal controlg(t) determined by the algorithm for the flows Re=75 () andRe=150 (b).
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FIG. 6. Snapshots of the vorticity fields corresponding to the uncontrolled(#pand the distinctive stages of the optimization prodegs(d), and the traces
of the optimal controlp,(t) (€), the drag coefficient;, (f) and the transverse velocityat the point (1.5,0.0)g) for Re=75 andT=6.0. Except for the top

figure, the vorticity fields correspond to the instances of time marked by the vertical lines in the figures on the right. For clarity, the contoutHimes fo
extremal vorticity values are not shown in the vorticity plots.

shedding and about 54% Bte=150. Thus, at a loweRe  The plots are normalized and give the circumferential veloc-
the control manages to suppress a larger fraction of the draity of the obstacle in units of the free stream. The first ob-
due to the oscillatory part of the flow. The reason for this isservation is that the magnitude of control is indeed rather
that the instability can be more easily controlled at a lowersmall, with the circumferential velocity of the obstacle being
Re Further below we address this issue in terms of the flowon the order of 2%—-5% foRe=75 and 10%—-20% for
patterns. Re=150 of the free stream(see also the quantity
Now in Fig. 5 we characterize the optimal controls, the||@op(t)|l 2o in Table I). The optimized controls are
rotation ratesp,,(t), that were determined by the algorithm. characterized by the presence of step-like discontinuities at
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FIG. 7. Snapshots of the vorticity fields corresponding to the uncontrolled(#pand the distinctive stages of the optimization prodess(d), and the traces
of the optimal controkp,,(t) (€), the drag coefficienty (f) and the transverse velocityat the point (1.5,0.0)g) for Re=150 andT=6.0. Except for the

top figure, the vorticity fields correspond to the instances of time marked by the vertical lines in the figures on the right. For clarity, the canfouthee
extremal vorticity values are not shown in the vorticity plots.

the boundaries between two optimization intervals. The conmate line minimization of the functional in the case when the
trols on adjoining intervals are determined independently an@ptimal value ofa; in (11) turns out to be significantly
there is no mechanism assuring that they should be continsmaller than the range af's tested during the given line
ous across the boundary. These issues are more systematiinimization. This set ofa’s depends on the initial guess
cally investigated by Heinkenschlo¥sAt the same time, which is fixed during the simulation with a given optimiza-
discontinuity of the rotation rate does not cause difficulties intion horizon and it may occasionally happen that for certain
the solution of the problem. In Fig. 5 we also see that theréntervals this initial guess may fall outside the validity range
are intervals with zero control interwoven with intervals of the Gaeaux differentiali.e., the linear approximationin
where the control does not vanish. As already pointed out irsuch case it might be difficult to find within the allowed
Sec. Il, the zero control is an adjustment related to approxinumber of flow evaluationgusually 4 to 5 a value of«
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resulting in a sufficient decrease of the functional. Neverthe- Total power Drag coefficient

less, this can only happen when the functional gradient has i ' Tt 0 o

relatively small magnitude and allowing for a few more flow %

148

evaluations would make it possible to find a nonzero control.a K.
However, the amplitude of this solution would be very small, ' —
— control low

138 138

as it would correspond to values @f much smaller than the -+ uncontrolled flow

154 154

ones determined on other intervals. Consequently, the de 3 T=5.0 i
crease of the functional comparing to its value obtained for '
the zero control would also be very smaitoportional to the A% M
small optimale;). At the same time, the computational cost ',
of this more accurate line minimization would be signifi- **
cantly increased. Therefore, for practical reasons, we leave s T=6.0
the zero control in cases when no functional decreasing so .« )
lution is found within the number of allowed functional Al W Peearremad e
o

evaluations. Given these observations, the presented resul ‘%
are in fact to be regarded as approximations of the optimal 1«

105 110 115 120 125 100 105 110 15 120 125 130

controls obtained with the numerical accuracy that we could ™ t t
afford. All the controls shown in Fig. 5 appear fairly spiky
and irregular, nevertheless, for the cagas- Cg some long  FIG. 8. Time history of the total powe? (left) and the drag coefficiert,

éright) for the controlled flows with different optimization horizons and the

time regularity can be traced in the time series. In fact, th  ncontrolled flow aRe=40.

tendency of the optimal control algorithm to develop spiky
controls was also evidenced in other related studies, namely,
by Grahamet al'* and Heet al.

Based on the obtained optimal controls, we made amontrol ¢,.(t), intervals of the strongest activity coincide
attempt at extracting simple open-loop controls hoping towith the intermediate stage corresponding to the plateau. In
reproduce the drag reduction. The extraction was done in thihe caseCg, when the control is switched on, the drag first
simplest possible fashion—the actual control for the casealso abruptly drops, and then oscillates about the new mean
B,, Bs, Bg andC,, Cs, Cgz was replaced with a harmonic value. In both cases we see that the optimal control results in
oscillation at the frequency and amplitude approximately dea significant reduction of the transverse velocity oscillations
termined from Fig. Sphase information was not taken into comparing to the uncontrolled flow and that the largest re-
account. Thus designed open-loop controller failed to duction is correlated with the sharpest decrease of drag. The
achieve drag reduction. Conversely, drag was increased eveiots of the transverse velocity also give an idea about the
above the uncontrolled level indicating that preserving thenumber of the vortex shedding cycles covered in the simula-
fine structure of the optimal control is essential for successtion.
fully extracting open-loop controls. This finding has practical Our presentation of the results is concluded by showing
implications, as it shows that the derived open-loop controlthe data for the subcritical case wike=40. In Fig. 8 we
ler must retain some small-scale features of the optimal conshow the total poweP and the drag coefficiert, obtained
trols. in the controlled flows with three optimization horizofs

We recapitulate this part by analyzing the correlation=4.0, 5.0, and 6.QcasesA,, As, andAg). We see that no
between the optimal contrap,,(t), modifications of the reduction of either the total powé or the dragcp has been
drag and changes in the flow pattern. In Fig. 6 we preserdchieved in any of the three cases.
evolutions of the optimal contrab,y(t), the drag coefficient Finally, we present samples of the adjoint “vorticity”
cp and the transverse velocity on the centerline for the fields. This is intended to give an idea of what the adjoint
control with the optimization horizom=6.0 and the Rey- field looks like and how its evolution compares to that of the
nolds numbeRe=75 (caseBg). In the figure we also show primal flow. In Fig. 9 we present snapshots of the primal
snapshots of the vorticity fields at the instances correspondrorticity (right columrn and of the corresponding adjoint
ing to the distinctive stages of the flow pattern development:vorticity.” By primal vorticity we mean the curl of the ve-

On the temporal plots these instances are marked by verticdcity field obtained from the forward in time integration of
dashed lines. In Fig. 7 we present analogous dataRfer the Navier—Stokes system, whereas the adjoint “vorticity” is
=150 andT=6.0 (caseCg). First we discuss the results for the solution of the backward in time adjoint system in the
the caseBg. When the control is switched on, drag rapidly form (16). In the figure we show the fields obtained in the
drops to some intermediate value and after some time dropsaseCg during the first iteration over the optimization inter-
to a still lower value around which it stabilizes. The snap-val [50;56]. We show snapshots taken at the instances of time
shots of the vorticity field correspond to the beginning of thet=50.5 (top), 53.0 (middle) and 55.5(bottom) which corre-
intermediate plateau, the middle of the following drop and arspond, respectively, to the beginning, the middle and the end
intermediate point during the final stabilization. In all the of the optimization interval. Note that, as discussed in Sec.
figures we see that control acts to suppress the vortex shed; the adjoint field vanishes at the end of the optimization
ding and the resulting flow approaches the symmetric statmterval (bottom figurey and develops backward in time.
with elongated recirculation bubble. As regards the optimaMWhen viewed from the bottom to the top, the adjoint field
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FIG. 9. Fields of the adjoinfleft) and the primalright) vorticity at the different stages during one optimization interval for the €aseThe fields shown
here correspond to the first iteration over the intef&8l, 56 (t—t, denotes the time elapsed since the control was switchgd-onclarity, the contour lines
for the extremal vorticity values are not shown. Arrows indicate the directions of the primal and the adjoint tands, respectively.

grows upstream, i.e., in the direction opposite to the primalvhich may suggest that optimization could practically be
field (this is due to the reversed sign of the fidlg in (16)  reduced to controlling a single shedding event. The drag re-
resulting from the substitution=T — 7). The physical mean- duction in the best cases was 7% Re=75 and 15% at

ing the adjoint field is that the integréd0), involving bound-  Re=150. Even though the presented algorithm is formally
ary values of strain associated with this field, represents thSptimaI in the actual numerical calculations we can only
sensitivity of the functiona(5) to the particular kind of forc-

ng compute an approximation of the optimal control. This ap-
ing.

proximation becomes more accurate when numerical param-
eters are refined. We believe that our results could still be
marginally improved by increasing the accuracy of line mini-
The presented results indicate that the algorithm doe§'izations. This would, however, greatly increase the compu-
indeed decrease drag, provided the optimization horizon i&tional cost which is already large, and therefore, would not
sufficiently long. The maximum sustained drag reduction isllow us to examine that many configurations. We note that
obtained when the optimization horizon becomes compain a related study using similar methods Eieal.” obtained
rable to the length of the natural vortex shedding periodabout 3% improvement over the control based on sinusoidal

VI. CONCLUSIONS
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rotation atRe=200. It is remarkable that in the present where the dimension of the control was much higher. On the
study the average level of the control power was very smallpther hand, this can also be the reason why the rotary control
smaller by more than one order of magnitude than the gain imay be less effective than distributed blowing and suction. In
the total power. The energetic efficiency of the algorithm carthe latter case the control dimension is much higher and the
be quantified by examining theower Saving RatidPSR control possesses more authority over the flow.
defined as One of the novelties of this paper consists in the deriva-
tion and the solution of the “vorticity” form(16) of the
adjoint problem(9). When one is using the Vortex Method,
this approach leads to important advantages. Finally, we wish
to say a few words about further perspectives. Perhaps a
The values of PSR obtained in the cassand C, are, better performance could be achieved by using a different
respectively, 122 and 51. The efficiency of the present algofunctional not directly linked to drag. It was shown that for-
rithm is thus significantly higher than in the suboptimal con-mulations based on the functional targeting the terminal ki-
trol approach developed by Min and Choi in Ref. 24 wherenetic energy(Bewleyet al.in Ref. 22 or the departure from
the PSR did not exceed 2 or 3, even though in that case trgome target flowe.g., Min and Choi in Ref. 24performed
net drag reduction was higher. This is evidence for thebetter than those directly targeting drag. In our case, given
“subtleness” of the method developed here. We notice, howthe relation between vortex shedding and drag, penalizing
ever, that efficiency of the algorithm as represented by PSEhe departure from the steady, symmetric basic flow could be
deteriorates as the Reynolds number increases. This is alét alternative. Furthermore, as shown by Cattisal,>* the
related to the increase of the amplitude of the optimal rotause of a carefully chosen Hilbert space to extract the gradient
tion rate(approximately by the factor of four as the Reynolds can enhance the regularity of the control. Another innovation
number is doubled In the case of a circular obstacle the would be to consider control of the flow past a noncircular
rotary control solely exploits viscous effects and their rela-obstacle. In this case the control would involve not only the
tive control authority decreases for highee when nonlin-  wall-tangential, but also the wall-normal velocity compo-
ear inertial effects obviously become more important. Onenent.
may thus conjecture that the control efficiency should be
somehow inversely proportional to the intensity of vortex
shedding. The Landau mod@ee, e.g., Mathist al®% char-  ACKNOWLEDGMENTS
acterizes this intensity using the transverse velagitn the
centerline whose amplitude scales &e{ Re.)!/2, where The authors acknowledge the financial support of the
Re.~46 marks the onset of vortex shedding. Indeed, wd>olish State Committee for Scientific Reseat@rant No.
observe that the heuristic relaton P$Rj~(Re KBN 7 T07A007 16 and the program POLONIUMGrant
—Re,) 12 js approximately verified by the PSR values atNo. 99158. Parts of the computations were pgrformed at
the two investigated Reynolds numbers. Lower efficiency of CM UW and PJWSTK. The authors have benefited from the
the algorithm may thus explain the increase of the Optimaﬂlscussmns with J. Rokicki and J. Szumbarski. Shankar Sub-
rotation amplitude witrRe. On the other hand, the present ramaniam kindly provided the authors with a part of his vor-
algorithm attempts to find the optimal control and from thetex code.
study by Heet al” it is known that the “optimal” amplitude
for the harmonic rotary control lies in a still higher range.

It follows from the above estimate that at much higherAPPENDIX: DERIVATION OF THE ADJOINT SYSTEM
Re the efficiency of the algorithm could further drop. This,
together with its large computational cdstquiring solution
of the Navier—Stokes and the adjoint system several time . . ; -
over the optimization intervalmakes the algorithm rather 7) are r.elat_ed to the Fobet dlfferent@l of the mapping
inapplicable under practical conditions. However, the goal oﬁ{v(¢)’9(¢)} and thus can be' obtqlned as the solution of
the present investigation was to use the Optimal Control a the _fomer—Stokes system linearized about the state
proach to assess the fundamental capabilities and Iimitatior{sVO(‘P)’pO(@)}
of the rotary control of the unsteady wake. Optimal controls [ w oW
could be used to extract open—loop control laws, but morg| | _| gr T (Vo VIW+(W-V)Vo—uAw+Vq | _
sophisticated reduction techniques are required. Our optimal q —V.w 0
control algorithm failed to achieve any success in controlling
the subcritical flow atRe=40. This seems to support the wW|;_,=0 in Q, (A1)
conjecture that the steady symmetric flow represents the
lower bound on the performance of this control configurationw_
in terms of the functiona(5). The control perturbatiol does not explicitly appear in the

The control configuration investigated in this study con-Gaeaux differential7), as it enters only through solutions of
sists of just a single degree of freedom at every instant ofAl). In order to factor it out we will employ thadjoint
time. This could explain why our optimization procedure re-operator N and theadjoint state{w*;q*} defined by the
quired less iterations than in the study by Bewkstyal,??>  following relation:

AP
PSR= — 2. (19)
Pc

As was shown by Abergel and Temam in Ref. 18, the
uantities{w(h);q(h)} appearing in the Gaaux differential

hrs on Ty, w—0 for |x|—oo.
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Note that sinceN andN* are “two-element” operators, the

scalar products ifA2) are in fact defined on Cartesian prod-

ucts of two spacek?(0,T;L?(Q))

a
b

c
d

) L2(0,T;L2((2))

=(a,¢)2¢01;L2(0)) T (b, d) 200T:12(02)) - (A3)

B. Protas and A. Styczek

ciously matched, then in expressioid) there appear terms
identical to the ones present in the first part (@j. It is
straightforward to verify that for the particular choice

9=V, 7+ V,.=rX(pe,)+ V.., (A8)

the boundary terms present(iA4) can be used to re-express
the Gaeaux differential(7) in such a way that the control

perturbatiorh explicitly appears in all the terms. In this way
we obtain(8).

!R. Mittal and S. Balachandar, “Effect of three-dimensionality on the lift

In (A2) B stands for the sum of the boundary terms obtained and grag of nominally two-dimensional cylinders,” Phys. Fluitjs1841
99
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