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Optimal rotary control of the cylinder wake in the laminar regime
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In this paper we develop the Optimal Control Approach to the rotary control of the cylinder wake.
We minimize the functional which represents the sum of the work needed to resist the drag force and
the work needed to control the flow, where the rotation rateẇ(t) is the control variable. Sensitivity
of the functional to control is determined using the adjoint equations. We solve them in the
‘‘vorticity’’ form, which is a novel approach and leads to computational advantages. Simulations
performed atRe575 andRe5150 reveal systematic decrease of the total power and drag achieved
using a very small amount of control effort. We investigate the effect of the optimization horizon on
the performance of the algorithm and the correlation of the optimal controls with the changes of the
flow pattern. The algorithm was also applied to the control of the subcritical flow atRe540,
however, no drag reduction was achieved in this case. Based on this, limits of the performance of
the algorithm are discussed. ©2002 American Institute of Physics.@DOI: 10.1063/1.1476671#
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I. INTRODUCTION

The general objective of flow control is to design a sm
@on the order ofO(e)# input to the system, i.e., thecontrol,
that will result in a significant@on the order ofO(1)# output
with desired properties. Given the nonlinear character of
governing equations and the chaotic nature of their solutio
the problem of controlling the fluid flow is highly nontrivia
and does not admit general and uniformly valid solutio
Many different approaches have been proposed and h
achieved varying degrees of success. In the present inv
gation we are interested in the fundamental problem of c
trolling the nonstationary wake behind the circular cylind
This flow configuration is regarded as a prototype of se
rated flows and at the same time is sufficiently simple
admit numerical solution at a reasonable cost. It is, theref
a convenient testbed for developing algorithms which can
later applied to more complex configurations. The flow d
main V is assumed to be infinite. The oncoming flow
uniform at infinity and has velocityV` ~see Fig. 1!. Wake
flows are characterized by the Reynolds number define
Re5uV`uD/v, wherev is the kinematic viscosity of the fluid
andD is the cylinder diameter. Control is applied in the for
of the rotary motion of the obstacle and is characterized
the instantaneous rotation rateẇ(t). It is equivalent to speci-
fying the tangential boundary velocityVt(t). By controlling
the flow we seek to reduce the drag, i.e., the horizontal c
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ponent of the force, using the smallest possible control eff
Most theoretical considerations discussed in this study
not restricted by the Reynolds number. However, all com
tational investigations presented here will concern the tw
dimensional laminar regime. Given the well-known limit
tions of the 2D model for the description of the wake flo
~e.g., Refs. 1 and 2!, our simulations are restricted to th
plane case withRe575 andRe5150. ForRe<180 cylinder
wake flows are known to remain two-dimensional~2D! ~see,
e.g., Williamson in Ref. 3!. This allows us to use 2D simu
lations in this regime. Additional simulations are also p
formed for the subcritical case withRe540.

From the physical point of view, our primary motivatio
comes from the laboratory experiments by Tokumaru a
Dimotakis.4 They showed that by using a very simple ha
monic rotation of the obstacle one can obtain significant d
reduction reaching 80% atRe515 000. This effect was fur-
ther investigated by Shields in Ref. 5 and Lu and Sato in R
6. In recent investigations Heet al.7 and Homescuet al.8

applied the tools of the Optimal Control Theory to optimi
the harmonic control of the wake. In a related study~Ref. 9!
we however obtained evidence showing that forRe5150 the
harmonic rotary control is energetically inefficient, i.e., t
control power far exceeds the gain in the drag power. In
present investigation we seek to optimize the rotary mot
of the obstacle so as to make the control more efficient fr
the point of view of energy budget. We are interested
assessing the inherent capabilities and limitations of such
approach. In the context of feedback wake control, mos
similar investigations dealt with the blowing-and-suctio
control, e.g., Gunzburger and Lee in Ref. 10 and Park in R

ess:
.

3 © 2002 American Institute of Physics
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11, or acoustic actuation, e.g., Roussopoulos in Ref. 12. In
of these works the authors relied on intuition to identify t
critical physical mechanisms which were then controlled.
alternative approach consists in extracting a low-dimensio
approximation of the system, the so-called Reduced O
Model, which is subjected to control. In the context of wa
flows these concepts were developed in the works by G
hamet al.,13,14 Chernyshenko,15 Cortelezzi,16 and Cortelezzi
et al.17

For the theoretical part, the present investigation bu
on the study by Abergel and Temam18 which was the first
formulation of a flow control problem in terms of the mode
Optimal Control Theory, an extension of the seminal wo
by Lions.19 This approach was first applied in the suboptim
setting, i.e., with the vanishing optimization horizon, to t
control of the stochastic Burgers equation by Choiet al. in
Ref. 20 and then to the control of the turbulent channel fl
by Leeet al. in Ref. 21. The finite horizon optimal control o
the channel flow was then systematically investigated
Bewley et al. in Ref. 22. As regards the wake flow, an op
mal control approach was considered theoretically by Srit
ran in Ref. 23 and computationally by Min and Choi24 ~the
latter study, however, concerns the blowing-and-suction t
of control in the suboptimal setting!. Therefore, the main
objective of the present study is to develop an optimal c
trol approach for drag minimization in the cylinder wake
the case when the rotary motion of the obstacle is the c
trol. Furthermore, the formalism is extended and recas
terms of the nonprimitive variables, i.e., velocity–vorticit
instead of velocity–pressure.

The flow of viscous incompressible fluid is governed
the Navier–Stokes system

]V

]t
1~V•¹!V52¹p1mDV,

¹•V50,

Vu t505V0 in V,

V5b~ ẇ ! on G0 , V→V` for uxu→`,

~1!

FIG. 1. Flow configuration with control.
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where V is the velocity field,p is pressure, andm is the
coefficient of viscosity. The system is supplemented with
boundary conditionsb(ẇ) representing the motion of th
boundary as a function of the rotation rateẇ, V` represent-
ing the free stream at infinity, and the initial conditionV0 . In
all the simulations reported here the initial conditionV0 will
correspond to the developed wake flow with saturated vo
shedding. When one is studying external flows, it is oft
more convenient to use the vorticity~i.e., the nonprimitive!
form of the system~1!. It is obtained by taking the curl of the
Navier–Stokes system and in 2D~i.e., whenV5@u,v,0#! is
expressed as

]v

]t
1~V•¹!v5mDv,

v5
]v
]x

2
]u

]y
,

]u

]x
1

]v
]y

50,

Vu t505V0 in V,

V5b~ ẇ ! on G0 , V→V` for uxu→`,

~2!

wherev denotes vorticity. In the case of multiconnected flo
domains this system must be supplemented by the follow
constraint on the vorticity production on the boundary
every ‘‘hole’’ in the flow domain~for derivation see, for ex-
ample, the study by Gunzburger and Peterson25!

mE
0

L ]v

]n
ds5E

0

L F]V

]t
•t1~V•n!vGds, ~3!

where the integrals are taken along the contour perim
@0;L#. This constraint ensures that the fieldV2V` has finite
kinetic energy and that pressure, when recovereda posteriori
from the velocity and vorticity fields, is single valued. Th
advantage of using formulations~2! and~3! is that it is based
on a more localized variable~vorticity!. Its support is quasi-
compact, as opposed to velocity and pressure. This is
ticularly convenient when one is studying flows in infini
domains.

The paper is organized as follows: in the next two s
tions we outline the Optimal Control Algorithm and deriv
the ‘‘vorticity’’ form of the adjoint equations, then we briefly
describe the Vortex Method which is used here to solve
hydrodynamic equations and also the adjoint system; in S
V we present and discuss the results of the computatio
final conclusions come in Sec. VI. In the Appendix w
present some technical details concerning the derivation
the adjoint system.

II. OPTIMAL CONTROL ALGORITHM

The starting point is the formulation of the specific fun
tional that will be minimized. In our case it represents t
balance over the time interval@0;T# of the work that has to
be done against the drag force and the work needed to
trol the flow
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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J~ ẇ !5
1

2 E0

TH Fpower related to
the drag forceG

1Fpower needed to
control the flowG J dt. ~4!

The rotation rateẇ(t) of the cylinder is the control~Fig. 1!,
therefore, the energy needed to control the flow is introdu
in the form of the moment of forces, the torque, applied
the cylinder. Here we do not take into account the momen
inertia of the cylinder, as it is entirely material-depende
and therefore can be arbitrary. Consequently, using the
face force densityf(ẇ), the above relation can be express
as

J~ ẇ !5
1

2 E0

T R
G0

$f~ ẇ !•V`1@r3f~ ẇ !#•~ ẇez!%dsdt

5
1

2 E0

T R
G0

$f~ ẇ !•@ẇ~ez3r!1V`#%dsdt

5
1

2 E0

T R
G0

$@p~ ẇ !n2mn•D% ~V~ ẇ !!#

•@ẇ~ez3r!1V`#%dsdt, ~5!

where all the hydrodynamic quantities depend on the con
ẇ. HereD% (V)5@¹V1(¹V)T# is the rate-of-strain tensor o
the fieldV andez the versor of thez axis ~normal to the flow
plane!.

The optimal controlẇopt and the related optimal stat
$V(ẇopt);p(ẇopt)% correspond to the minimum of the func
tional ~5! and are therefore characterized by the vanishing
its Gâteaux differential

J8~ ẇopt;h!50, ~6!

whereh represents an arbitrary direction in the space of c
trols in which the differential is computed. We note that~6! is
only a necessary, but not sufficient, condition for optimal
and, since the governing equation~1! is nonlinear, convexity
di
e
ta

rd
t

e
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of the functional~5! cannot be ensured and the optimum
only local. The Gaˆteaux differential represents the linear pa
of the functional increment that results from applying t
perturbationh to control and evaluated in the neighborho
of the state$V0(ẇ);p0(ẇ)%. For the case of the functiona
~5!, the Gâteaux differential takes the form

J8~ ẇ;h!5
1

2 E0

T R
G0

$@q~h!n2mn•D% ~w~h!!#

•@ẇ~ez3r!1V`#1@p0~ ẇ !n2mn

•D% ~V0~ ẇ !!#•~ez3r!h%dsdt, ~7!

where the quantities$w(h);q(h)% are the solution of the
Navier–Stokes system~1! linearized about the state$V0 ;p0%
~see the Appendix for details!. It should be observed that fo
the circular cylinder the vectorsn and r are collinear, hence
n•(ez3r)50 and the pressure term in~7! drops out. The
Gâteaux differential will now be used to extract the fun
tional gradient¹J according toJ8(ẇ;h)5(¹J,h)L2([0,T]) .
However, the expression~7! does not have a form convenien
for this purpose, as the control perturbationh enters implic-
itly through the solution of the linearized problem. The no
classical approach~see Lions,19 Abergel and Temam,18 and
Bewleyet al.26! consists in using the adjoint operatorN* and
the associated adjoint state$w* ;q* % to reexpress~7! so that
the control perturbationh appears as a factor. This yields

J8~ ẇ;h!5E
0

T

¹J~ t !hdt

5
1

2 E0

T R
G0

$mRn•D% ~w* !•t

1mn•D% ~V0~ ẇ !!•~ez3r!%hdsdt, ~8!

whereR is the cylinder radius andt the unit tangent vector
whereasw* is a solution of the system adjoint to the Navier
Stokes equations linearized about the state$V0 ;p0%. The ad-
joint system has the form
N* Fw*

q*
G5F 2

]w*

]t
2V0•@¹w* 1~¹w* !T#2mDw* 1¹q*

2¹•w*
G5F 0

0
G ,

w* u t5T50 in V, ~9!

w* 5r3~ ẇez!1V` on G0 , w* →0 for uxu→`.
-

ing
For complete derivation we refer the reader to the Appen
The functional setting and issues related to the existenc
solutions for a very similar problem were addressed in de
by Fursikovet al. in Ref. 27. Here we note that~9! is in fact
a terminal value problem, i.e., it has to be marched backwa
in time. The system is nevertheless well-posed, as using
substitutiont5T2t we arrive at a problem similar to th
x.
of
il

he

advection-diffusion equation~this substitution, however, re
verses the fieldV0 in which advection takes place!. The ad-
joint system~9! involves the primal fieldV0 as coefficients
and is forced through the boundary conditions correspond
to the quantities measured by the functional~5!. Applying
the identityJ8(ẇ;h)5(¹J,h)L2([0,T]) to ~8! we can now ex-
tract the functional gradient as
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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¹J~ t !5 1
2 mR R

G0

n

•@D% ~w* !1D% ~V0~ ẇopt!!#•tds

5 1
2 mR2E

0

2p

@~s11
0 1s11* !~2sin~2u!!

1~s12
0 1s12* !cos~2u!#du, ~10!

wheres11
0 , s12

0 , s11* , ands12* are the components of the rat
of-strain tensor for the primal and the adjoint field,D% (V0)
andD% (w* ), respectively. Thus2¹J(t) represents the direc
tion in which the control corresponding to the sta
$V0(ẇ);p0(ẇ)% should be updated in order to decrease
functional~5!. Upon multiplying the gradient¹J(t) by some
h(t) and integrating over@0;T#, we obtain the first-order
approximation to the change of the functional due to
perturbationh. Therefore, the adjoint state$w* ;q* % admits a
clear physical interpretation—the adjoint strain on t
boundary carries information about the sensitivity of t
functional ~5! to the given type of forcing. Evidently, apa
from the adjoint fields, to compute¹J(t) we also need the
primal state$V0(ẇ);p0(ẇ)% at which the gradient is evalu
ated. We remark that the above derivation is fairly gene
and so far we have not introduced any assumptions rest
ing the flow to two dimensions.

Now an iterative gradient procedure will be presen
which can be used to find the optimal controlẇopt and the
corresponding optimal state$V(ẇopt);p(ẇopt)% in the time
interval @0;T#. First, we choose some initial guessẇ1 for
control ~for instanceẇ1[0) and then sequentially compu
the functional gradient¹J(t) and update the time-depende
control accordingly. This involves the following steps~here
the superscriptsi denote the consecutive iterations!:

~1! solve the full nonlinear Navier–Stokes system in ord
to determine$V0(ẇ i);p0(ẇ i)% around which lineariza-
tion is made;

~2! solve~9! for the adjoint state$w* i ;q* i% ~in the neighbor-
hood of$V0(ẇ i);p0(ẇ i)%);

~3! use $V0(ẇ i);p0(ẇ i)% and $w* i ;q* i% to determine the
functional gradient¹Ji(t) on the interval@0;T#;

~4! use ¹Ji(t) to update the control according toẇ i 11(t)
5ẇ i(t)2a ig i(¹J(t)), wherea i is some properly tuned
descent parameter andg i is the descent direction;

~5! iterate ~1!–~4! until convergence, i.e., until¹Ji(t)50
attains in some approximate sense.

Now it must be explained how the gradient informati
¹Ji is used to determine the descent directiong i . Guided by
Bewley et al.,22 we use the Polak–Ribiere version of th
Conjugate Gradient Algorithm~see Polak28!. In every itera-
tion the control is updated according to

ẇ i 115ẇ i2a ig i , ~11!

whereg i represents the conjugate direction given by

g i5¹Ji2b ig i 21 , g15¹J1, ~12!

with b i standing for the ‘‘momentum’’ parameter
Downloaded 20 May 2002 to 132.239.20.19. Redistribution subject to A
e

e

l
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r

b i5
~~¹Ji2¹Ji 21!,¹Ji !

~¹Ji 21,¹Ji 21!
. ~13!

We remind thatẇ i 11, ẇ i , andg i are all functions of time,
but the corresponding notation is suppressed here for bre
The value of the parametera i is adjusted in the course of
line minimization procedure which minimizes the function
along the descent direction. For this we use the Bre
method ~see Presset al.29! combining the golden section
search with parabolic interpolation. Such an approach
sures robustness in the initial bracketing of the minimu
performed as the golden section search, with fast con
gence when parabolic interpolation takes over. As will b
come apparent later on, line minimization involves a trad
off between accuracy and the number of flow evaluatio
~they account for the major part of the overall computatio
cost!. For nearly quadratic functionals the Conjugate Gra
ent Method is known to assure fastest convergence, m
better than the simple steepest descent method. Iteration
terminated when in a given number of functional evaluatio
~usually 4 to 5! the updated control does not decrease
functional. This may also happen when the initial guess
a i falls outside the validity range of the linear approximati
to the functional increment given by the Gaˆteaux differential.
In principle, the extent of this range is not knowna priori
and may be different for problems on different optimizati
intervals. Consequently, in order to ensure rapid converge
of line minimization in all the investigated configuration
the initial guess fora i is adjusted by trial and error. We
emphasize that this is done to enhance performance wit
compromising accuracy and in principle, when the num
of available flow evaluations is large, the optimala i can be
found starting from any sufficiently small initial guess.

The procedure described above allows us to minim
the functional over the optimization intervalT. Ideally, one
would wish to extendT so as to cover the whole time-spa
over which flow control is attempted. This would, howeve
result in an intractable computational task. Even more imp
tantly, as reported by Bewleyet al.,22 the problem may for
long T become strongly nonconvex and have many lo
minima. Consequently, optimization must be independen
performed over a sequence of shorter intervals resulting in
approach referred to aspiecewise optimal. The state reached
by the optimized flow at the end of a given interval is tak
as the starting point for optimization on the following inte
val. Of course, optimal controls determined separately o
sequence of intervals with lengthT do notcombine into a
globally optimal control on the whole optimization time
span. Certain general properties of the piecewise opti
control were studied by Heinkenschloss30 who showed that
the problem of computing piecewise optimal controls on a
jacent intervals is related to the forward sweep of the Gau
Seidel method for the solution of the related linear algebr
problem which has block structure. The piecewise optim
control approach to the 2D velocity tracking problem w
addressed by Hou and Yan31 who proved that the rate of th
functional decrease is independent of the lengthT of the
single optimization horizon. On the other hand, Bewl
et al.22 showed computational evidence that the effectiven
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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of the control increases as the optimization horizon is
tended until a certain value ofT is reached beyond which i
does not improve anymore. Further below we address th
issues in the present problem.

III. ‘‘VORTICITY’’ FORM OF THE ADJOINT EQUATIONS

As discussed in the Introduction, we choose to solve
hydrodynamic equations~1! in the vorticity form ~2!. It is
natural to apply the same solution method and the sa
solver to the adjoint equations formulated above. To this
it is necessary to derive the ‘‘vorticity’’ form of the system
~9!. We use the term ‘‘vorticity’’ in quotes, because th
quantity is the curl of a field which is not, strictly speakin
the actual velocity field. Since this is a novel approach,
present it here first for the complete 3D system, and t
specify the derivation to the 2D case. We take the curl of
first element in the expression corresponding toN* w* in ~9!
and immediately notice that the ‘‘pressure’’ term drops o
and that the curl operator commutes with both the time
rivative and the Laplacian. As regards the ‘‘advection’’ ter
we have the following~here we have to use index notatio
for vector operations!:

~14!

Here vA* 5¹3w* is the adjoint ‘‘vorticity,’’ @+#m denotes
the mth component of a given vector and«mk j is the Levi–
Civita alternating tensor. The vector dual to a tensor
defined as @dualA# i5

1
2« i jkAjk . In the above the term

«mk jV0i (]2wi* /]xj]xk) vanishes due to symmetry of the te
sor with the second derivatives of the quantitywi* . Conse-
quently, the vorticity adjoint equation takes the form

2
]vA*

]t
2~V0•¹!vA* 2mDvA*

12dual$¹V0•@¹w* 1~¹w* !T#%50,

vA* 5¹3w* , ¹•w* 50, ~15!

w* 52g on G0 , w* →0 for uxu→`,

w* u t5T50 in V.

The functiong specifying the boundary condition is given
the Appendix@Eq. ~A8!#. In the plane 2D case the abov
system reduces to (vA* 5vA* ez)
Downloaded 20 May 2002 to 132.239.20.19. Redistribution subject to A
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2
]vA*

]t
2~V0•¹!vA* 2mDvA* 12F]wy*

]y S ]V0y

]x
1

]V0x

]y D
1

]V0x

]x S ]wy*

]x
1

]wx*

]y D G50,

vA* 5
]wy*

]x
2

]wx*

]y
,

]wx*

]x
1

]wy*

]y
50, ~16!

w* 52g on G0 , w* →0 for uxu→`,

w* u t5T50 in V,

wherew* 5@wx* ,wy* ,0#. The source~i.e., the last! term in
the 2D vorticity equation above can be expressed using c
ponents of the rate-of-strain tensors of the primal and
adjoint field ass11

0 s12* 2s11* s12
0 .

As was the case of the Navier–Stokes system, the
joint ‘‘pressure’’ can be determineda posteriori from the
Poisson equation obtained by taking the divergence of
momentum adjoint equation~9!. After some elementary
transformations this yields

Dq* 5¹V0 :@¹w* 1~¹w* !T#1V0•mDvA* ,

~n•¹!q* 5n•H 2
]w*

]t
2V0•@¹w* 1~¹w* !T#2mDw* J

G

.

~17!

Similarly to the vorticity equation~2!, in multiconnected do-
mains systems~15! and ~16! must be complemented with
constraints on ‘‘vorticity’’ production on the boundary. The
are obtained by projecting the momentum adjoint equat
~9! on the directiont tangential to the boundary, integratin
along the perimeter and requiring that there be no jump
pressure. In 2D this yields

m R
G0

]vA*

]n
ds52 R

G0

S ]w*

]t D •tds

1 R
G0

H @~V0•¹!w* #•t1w*
]

]s
V0J ds.

~18!

This, together with~16! and ~17!, constitutes an equivalen
formulation of the adjoint system~9! in 2D.

IV. NUMERICAL SIMULATIONS

All the simulations presented in this study are perform
with the use of the Vortex Method. This is a Lagrangi
approach to solving the 2D vorticity equation~2!. The main
idea consists in approximating the vorticity field using
unstructured superposition of vorticity particles with pr
scribed core functions. The system is advanced in time us
viscous splitting which means that the advection and dif
sion part of ~2! are solved independently during one tim
step. Every particle, called thevortex blob, moves in the
velocity field induced by all other particles and compl
mented with some potential contribution. Our Vortex Meth
uses the second-order accurate Gaussian core functions
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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bined with the second-order time splitting scheme. Exha
tive description of the implementation together with vario
benchmarks is presented in Refs. 9 and 32.

One of the novelties of this paper is the derivation a
the solution of the ‘‘vorticity’’ form ~16! of the adjoint sys-
tem ~9!. Now we give some remarks concerning its soluti
using the Vortex Method. The system~16! constitutes a ter-
minal value problem, however, using the substitutiont5T
2t we obtain an initial value problem for the advection
diffusion equation with a source term. It can be march
forward in the timet, i.e., backward in the ‘‘physical’’ time
t. After this substitution, the adjoint system~16! is solved
using essentially the same method as the primal system~2!.
The few modifications are addressed below. Advection in
adjoint system~16! takes place in the velocity fieldV0 , i.e.,
the solution of the Navier–Stokes system around which
linearization is performed at a given iteration. However, a
result of the above substitution, the sign of the fieldV0 is
reversed, and therefore, the adjoint flow develops in the
rection opposite to the primal Navier–Stokes flow. The a
joint ‘‘vorticity’’ equation ~16! differs from the vorticity
equation~2! also in that it has the source termSrc5s11

0 s12*
1s11* s12

0 . Apart from diffusion, this is the second mechanis
which changes the strengths of the particles. The source
is evaluated at the centers of the particles and then the
sulting circulation updates are computed. When the part
~i.e., Lagrangian! representation is used, the strain fieldss11

ands12 have essentially the same localization as the vortic
field v. This means that the source termSrc practically
vanishes away from the support of both the primal and
adjoint vorticity, and therefore, new circulation is not creat
there. Consequently, the source terms modifies the ad
‘‘vorticity’’ field via update of the strengths of the existin
particles only. For comparable sizes, the computational
of the adjoint problem is slightly larger than that of the p
mal. This is because the adjoint solver must handle
fields, i.e., the primal~in which advection takes place! and
the dual, and must also account for the source term. Ne
theless, in practice the length of a single optimization ho
zonT is significantly shorter than the total time for which th
flow is computed. Owing to the ever-expanding characte
the Lagrangian mesh, the computational time per time ste
proportional to the length of the interval over which we ne
to calculate the solution. Therefore, in our problem the s
port of the adjoint ‘‘vorticity’’ is much smaller than of the
primal vorticity and, consequently, the size of the adjo
problem is usually much smaller than that of the primal. T
is an advantage of using the ‘‘vorticity’’ form of the momen
tum adjoint equations.

V. RESULTS OF THE OPTIMAL CONTROL

In this section we present and analyze the results of
simulations using the optimal control algorithm. In all cas
control is applied to the wake flow with developed vort
shedding. We briefly recall here that, in the spirit of t
piecewise linear control, the whole optimization time-span
split into several intervals with the same length. Optimiz
tion is then performed on each of these and the flow s
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reached at the end of an interval is taken as the starting p
for optimization on the following interval. Our investigation
are performed at the Reynolds numbers of 75 and 150 wh
allows us to see how the algorithm handles flows charac
ized by different degrees of supercriticality. We also make
attempt at controlling the stationary flow atRe540. This is
intended to address the question whether the basic flow,
the steady symmetric state, constitutes the limit of perf
mance at a givenRe. In Table I we summarize the numerica
parameters~time stepDt, blob radiusr b and the approximate
number of vorticesNb! used in the simulations of the flow
at different Reynolds numbers. At a givenRe, flows with
different optimization horizons as well as the adjoint pro
lem are computed with the same numerical parameters. N
in Table II we summarize the parameters of the control in
different cases. Flows atRe540, 75 and 150 are labele
Aa , Ba , andCa , respectively, with the subscripta repre-
senting to the length of the optimization horizon. Hereaf
these symbols will be used to refer to the particular co
trolled flows. In the table we give the lengths of the optim
zation horizonsT and their ratios to the length of the natur
vortex shedding period equal to 6.9 and 5.5 atRe575 and
Re5150, respectively. For the steady flow atRe540 this
quantity is obviously indeterminate. We also show the nor
iẇopt(t)iL2([0,T]) of the optimal controls which give an ide
about their ‘‘intensity.’’ The control is switched on at th
instantt05100 for Re540, at t0575 for Re575 and att0

550 for Re5150. Using the Vortex Method, the steady su
critical flow at Re540 is computed as the limit correspon

TABLE I. Numerical parameters used in the simulations at different R
nolds numbersRe. Time step is denotedDt, blob radiusr b and approximate
number of vortex blobsNb .

Re Dt r b Nb (3103)

40 0.05 0.0278 150
75 0.05 0.0222 200

150 0.05 0.0178 300

TABLE II. Parameters of the control algorithm:T is the length of the opti-
mization horizon andT/TVS its ratio to the length of the natural vorte
shedding period at a givenRe, iẇopt(t)iL2([0,T]) is the norm of the optimal
control.

Re T

T

TVS iẇopt(t)iL2

A4 40 4.0 ¯ 0.030
A5 40 5.0 ¯ 0.012
A6 40 6.0 ¯ 0.040
B1 75 1.0 0.15 0.032
B2 75 2.0 0.29 0.040
B3 75 3.0 0.44 0.041
B4 75 4.0 0.58 0.042
B5 75 5.0 0.73 0.039
B6 75 6.0 0.87 0.041
C1 150 1.0 0.18 0.069
C2 150 2.0 0.36 0.089
C3 150 3.0 0.54 0.076
C4 150 4.0 0.72 0.141
C5 150 5.0 0.91 0.114
C6 150 6.0 1.08 0.123
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



2079Phys. Fluids, Vol. 14, No. 7, July 2002 Optimal rotary control
FIG. 2. The total powerP in the controlled flows with different optimization horizons and in the uncontrolled flows atRe575 ~a! andRe5150 ~b!.
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ing to t→` of the unsteady flow instantaneously accelera
from rest. In such case att05100 all the transients related t
the instantaneous start are already sufficiently small. Con
gence of the optimal control algorithm was usually achiev
within 2 to 3 iterations. Every iteration required first solutio
of the Navier–Stokes system forward in time, then solut
of the adjoint problem backward in time and finally a fe
~usually 5–7! evaluations of the functional, each of the
involving solution of the Navier–Stokes system on the op
mization interval. As explained above, the computatio
cost of the adjoint problem is usually slightly smaller th
for the primal problem, nevertheless the overall cost of
optimization procedure is comparable to 12–20 solutions
the Navier–Stokes system on the optimization interval. B
low we first proceed to discuss the control of the unste
flows atRe575 andRe5150 and then of the steady flow a
Re540.

The quantity which we in principle seek to minimize
the sum of the work done against the drag force and the w
needed to control the flow. In Fig. 2 we present the tempo
evolution of the total powerP5FD•uV`u1M•ẇ for flows at
Re575 andRe5150 with different optimization horizons
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and the flows with no control. We see that, apart from
cases with the shortest optimization horizons~B1 and C1!,
the total power is decreased for both values ofRe. This
confirms the effectiveness of the algorithm. Evidently, red
tion is greater for longer optimization horizons. AtRe575
the total power is pushed down to a lower level arou
which it stabilizes. AtRe5150 the total power oscillate
around new values lower than in the uncontrolled flow.
Fig. 3 we present the time series of the control powerPC .
We see that they are intermittent with occasional excursi
to negative values. Spikes observed in Fig. 3 are relate
sharp movements of the obstacle. In absolute terms, the
duction of the total power atRe575 was smaller than a
Re5150 by a factor of about two. So was the control pow
which atRe575 was smaller than atRe5150 by a factor of
about five.

Next in Fig. 4 we present the temporal evolution of t
drag coefficientcD , the quantity which is of greatest intere
in most practical implementations. Its temporal behavior is
all cases very similar to the behavior of the total powerP
which is due to the very low lever of the control powerPC .
In Fig. 4 we also indicate the drag values obtained in
FIG. 3. The control powerPC in the controlled flows with different optimization horizons atRe575 ~a! andRe5150 ~b!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 4. The drag coefficientcD in the controlled flows with different optimization horizons and in the uncontrolled flows atRe575 ~a! andRe5150 ~b!. The
values of drag in the basic flows are also indicated.
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unstable, steady, symmetric states~i.e., thebasic flows! at the
sameRe. In the flow atRe575 with the longest optimiza
tion horizonT56.0 the drag is driven down to about 93%
its value in the uncontrolled flow. ForRe5150 andT56.0
drag oscillates at about 85% of its original value.

For both values ofRe the amount of the sustained dra
decrease grows as the optimization horizon is extended
reaches maximum at values ofT comparable to the length o
the vortex shedding period. As the results for the casesC4 ,
C5 , and C6 show, longer optimization horizons primaril
reduce the amplitude of oscillations around the new value
the mean drag. Our additional investigations~not reported
here! indicate that extension of the optimization horizon b
yond the natural vortex shedding period does not impr
effectiveness of the control anymore. Similar behavior of
optimal control algorithm with respect to the length of t
optimization horizon was observed by Bewleyet al. in Ref.
22 for the case of the turbulent channel flow. We propose
following simple rationale to explain this behavior—for in
termediate values ofT, i.e., smaller than some characteris
time scale of the phenomenon~the natural vortex sheddin
period in the present study!, the effectiveness of the algo
Downloaded 20 May 2002 to 132.239.20.19. Redistribution subject to A
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rithm increases as we extendT and thereby look farther
ahead while optimizing the flow. However, when the char
teristic time scale of vortex shedding is reached, further
tension of the optimization horizonT does not bring in sig-
nificantly new information, and therefore, the algorithm do
not perform any better. We note that this second regime
consistent with the theoretical predictions of Hou and Ya31

mentioned earlier in Sec. II.
As shown by Protas and Wesfreid in Ref. 9, in the s

percritical wake flow the mean drag consists of the two c
tributions: The drag of thebasic flow ~i.e., the unstable,
steady, symmetric solution! which at a givenRe remains
fixed and the drag of themean flow correctionwhich is due
to the presence of the vortex shedding and can be affecte
a suitable modification of how the vortices are created a
shed. As the Reynolds number increases, the relative co
bution of the oscillatory part of the flow to drag becom
more significant. In Fig. 4 we marked the values of drag
the corresponding basic flows, so that the intervals ab
them indicate the drag related to the Be´nard–von Ka´rmán
vortices. We note that atRe575 and forT56.0 the control
is able to annihilate about 62% of the drag related to vor
FIG. 5. The optimal controlsẇopt(t) determined by the algorithm for the flows atRe575 ~a! andRe5150 ~b!.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 6. Snapshots of the vorticity fields corresponding to the uncontrolled flow~a! and the distinctive stages of the optimization process~b!–~d!, and the traces
of the optimal controlẇopt(t) ~e!, the drag coefficientcD ~f! and the transverse velocityv at the point (1.5,0.0)~g! for Re575 andT56.0. Except for the top
figure, the vorticity fields correspond to the instances of time marked by the vertical lines in the figures on the right. For clarity, the contour liner the
extremal vorticity values are not shown in the vorticity plots.
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shedding and about 54% atRe5150. Thus, at a lowerRe
the control manages to suppress a larger fraction of the
due to the oscillatory part of the flow. The reason for this
that the instability can be more easily controlled at a low
Re. Further below we address this issue in terms of the fl
patterns.

Now in Fig. 5 we characterize the optimal controls, t
rotation ratesẇopt(t), that were determined by the algorithm
Downloaded 20 May 2002 to 132.239.20.19. Redistribution subject to A
ag
s
r
w

The plots are normalized and give the circumferential vel
ity of the obstacle in units of the free stream. The first o
servation is that the magnitude of control is indeed rat
small, with the circumferential velocity of the obstacle bei
on the order of 2% – 5% forRe575 and 10% – 20% for
Re5150 of the free stream~see also the quantity
iẇopt(t)iL2([0,T]) in Table II!. The optimized controls are
characterized by the presence of step-like discontinuitie
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 7. Snapshots of the vorticity fields corresponding to the uncontrolled flow~a! and the distinctive stages of the optimization process~b!–~d!, and the traces
of the optimal controlẇopt(t) ~e!, the drag coefficientcD ~f! and the transverse velocityv at the point (1.5,0.0)~g! for Re5150 andT56.0. Except for the
top figure, the vorticity fields correspond to the instances of time marked by the vertical lines in the figures on the right. For clarity, the contour lines for the
extremal vorticity values are not shown in the vorticity plots.
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the boundaries between two optimization intervals. The c
trols on adjoining intervals are determined independently
there is no mechanism assuring that they should be con
ous across the boundary. These issues are more syste
cally investigated by Heinkenschloss.30 At the same time,
discontinuity of the rotation rate does not cause difficulties
the solution of the problem. In Fig. 5 we also see that th
are intervals with zero control interwoven with interva
where the control does not vanish. As already pointed ou
Sec. II, the zero control is an adjustment related to appr
Downloaded 20 May 2002 to 132.239.20.19. Redistribution subject to A
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mate line minimization of the functional in the case when t
optimal value ofa i in ~11! turns out to be significantly
smaller than the range ofa’s tested during the given line
minimization. This set ofa’s depends on the initial gues
which is fixed during the simulation with a given optimiza
tion horizon and it may occasionally happen that for cert
intervals this initial guess may fall outside the validity ran
of the Gâteaux differential~i.e., the linear approximation!. In
such case it might be difficult to find within the allowe
number of flow evaluations~usually 4 to 5! a value ofa
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resulting in a sufficient decrease of the functional. Nevert
less, this can only happen when the functional gradient h
relatively small magnitude and allowing for a few more flo
evaluations would make it possible to find a nonzero cont
However, the amplitude of this solution would be very sma
as it would correspond to values ofa i much smaller than the
ones determined on other intervals. Consequently, the
crease of the functional comparing to its value obtained
the zero control would also be very small~proportional to the
small optimala i!. At the same time, the computational co
of this more accurate line minimization would be signi
cantly increased. Therefore, for practical reasons, we le
the zero control in cases when no functional decreasing
lution is found within the number of allowed functiona
evaluations. Given these observations, the presented re
are in fact to be regarded as approximations of the opti
controls obtained with the numerical accuracy that we co
afford. All the controls shown in Fig. 5 appear fairly spik
and irregular, nevertheless, for the casesC32C6 some long
time regularity can be traced in the time series. In fact,
tendency of the optimal control algorithm to develop spi
controls was also evidenced in other related studies, nam
by Grahamet al.14 and Heet al.7

Based on the obtained optimal controls, we made
attempt at extracting simple open-loop controls hoping
reproduce the drag reduction. The extraction was done in
simplest possible fashion—the actual control for the ca
B4 , B5 , B6 andC4 , C5 , C6 was replaced with a harmoni
oscillation at the frequency and amplitude approximately
termined from Fig. 5~phase information was not taken in
account!. Thus designed open-loop controller failed
achieve drag reduction. Conversely, drag was increased
above the uncontrolled level indicating that preserving
fine structure of the optimal control is essential for succe
fully extracting open-loop controls. This finding has practic
implications, as it shows that the derived open-loop cont
ler must retain some small-scale features of the optimal c
trols.

We recapitulate this part by analyzing the correlati
between the optimal controlẇopt(t), modifications of the
drag and changes in the flow pattern. In Fig. 6 we pres
evolutions of the optimal controlẇopt(t), the drag coefficient
cD and the transverse velocityv on the centerline for the
control with the optimization horizonT56.0 and the Rey-
nolds numberRe575 ~caseB6!. In the figure we also show
snapshots of the vorticity fields at the instances correspo
ing to the distinctive stages of the flow pattern developme
On the temporal plots these instances are marked by ver
dashed lines. In Fig. 7 we present analogous data forRe
5150 andT56.0 ~caseC6!. First we discuss the results fo
the caseB6 . When the control is switched on, drag rapid
drops to some intermediate value and after some time d
to a still lower value around which it stabilizes. The sna
shots of the vorticity field correspond to the beginning of t
intermediate plateau, the middle of the following drop and
intermediate point during the final stabilization. In all th
figures we see that control acts to suppress the vortex s
ding and the resulting flow approaches the symmetric s
with elongated recirculation bubble. As regards the optim
Downloaded 20 May 2002 to 132.239.20.19. Redistribution subject to A
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control ẇopt(t), intervals of the strongest activity coincid
with the intermediate stage corresponding to the plateau
the caseC6 , when the control is switched on, the drag fir
also abruptly drops, and then oscillates about the new m
value. In both cases we see that the optimal control result
a significant reduction of the transverse velocity oscillatio
comparing to the uncontrolled flow and that the largest
duction is correlated with the sharpest decrease of drag.
plots of the transverse velocity also give an idea about
number of the vortex shedding cycles covered in the simu
tion.

Our presentation of the results is concluded by show
the data for the subcritical case withRe540. In Fig. 8 we
show the total powerP and the drag coefficientcD obtained
in the controlled flows with three optimization horizonsT
54.0, 5.0, and 6.0~casesA4 , A5 , andA6!. We see that no
reduction of either the total powerP or the dragcD has been
achieved in any of the three cases.

Finally, we present samples of the adjoint ‘‘vorticity
fields. This is intended to give an idea of what the adjo
field looks like and how its evolution compares to that of t
primal flow. In Fig. 9 we present snapshots of the prim
vorticity ~right column! and of the corresponding adjoin
‘‘vorticity.’’ By primal vorticity we mean the curl of the ve-
locity field obtained from the forward in time integration o
the Navier–Stokes system, whereas the adjoint ‘‘vorticity’’
the solution of the backward in time adjoint system in t
form ~16!. In the figure we show the fields obtained in th
caseC6 during the first iteration over the optimization inte
val @50;56#. We show snapshots taken at the instances of t
t550.5 ~top!, 53.0 ~middle! and 55.5~bottom! which corre-
spond, respectively, to the beginning, the middle and the
of the optimization interval. Note that, as discussed in S
II, the adjoint field vanishes at the end of the optimizati
interval ~bottom figures!, and develops backward in time
When viewed from the bottom to the top, the adjoint fie

FIG. 8. Time history of the total powerP ~left! and the drag coefficientcD

~right! for the controlled flows with different optimization horizons and th
uncontrolled flow atRe540.
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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FIG. 9. Fields of the adjoint~left! and the primal~right! vorticity at the different stages during one optimization interval for the caseC6 . The fields shown
here correspond to the first iteration over the interval@50, 56# (t2t0 denotes the time elapsed since the control was switched on!. For clarity, the contour lines
for the extremal vorticity values are not shown. Arrows indicate the directions of the primal and the adjoint times,t andt, respectively.
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grows upstream, i.e., in the direction opposite to the prim
field ~this is due to the reversed sign of the fieldV0 in ~16!
resulting from the substitutiont5T2t!. The physical mean-
ing the adjoint field is that the integral~10!, involving bound-
ary values of strain associated with this field, represents
sensitivity of the functional~5! to the particular kind of forc-
ing.

VI. CONCLUSIONS

The presented results indicate that the algorithm d
indeed decrease drag, provided the optimization horizo
sufficiently long. The maximum sustained drag reduction
obtained when the optimization horizon becomes com
rable to the length of the natural vortex shedding peri
Downloaded 20 May 2002 to 132.239.20.19. Redistribution subject to A
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which may suggest that optimization could practically
reduced to controlling a single shedding event. The drag
duction in the best cases was 7% atRe575 and 15% at
Re5150. Even though the presented algorithm is forma
optimal, in the actual numerical calculations we can on
compute an approximation of the optimal control. This a
proximation becomes more accurate when numerical par
eters are refined. We believe that our results could still
marginally improved by increasing the accuracy of line mi
mizations. This would, however, greatly increase the com
tational cost which is already large, and therefore, would
allow us to examine that many configurations. We note t
in a related study using similar methods Heet al.7 obtained
about 3% improvement over the control based on sinuso
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp
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rotation at Re5200. It is remarkable that in the prese
study the average level of the control power was very sm
smaller by more than one order of magnitude than the gai
the total power. The energetic efficiency of the algorithm c
be quantified by examining thePower Saving Ratio~PSR!
defined as

PSR5
DPD

PC
. ~19!

The values of PSR obtained in the casesB6 and C6 are,
respectively, 122 and 51. The efficiency of the present a
rithm is thus significantly higher than in the suboptimal co
trol approach developed by Min and Choi in Ref. 24 whe
the PSR did not exceed 2 or 3, even though in that case
net drag reduction was higher. This is evidence for
‘‘subtleness’’ of the method developed here. We notice, ho
ever, that efficiency of the algorithm as represented by P
deteriorates as the Reynolds number increases. This is
related to the increase of the amplitude of the optimal ro
tion rate~approximately by the factor of four as the Reynol
number is doubled!. In the case of a circular obstacle th
rotary control solely exploits viscous effects and their re
tive control authority decreases for higherRe when nonlin-
ear inertial effects obviously become more important. O
may thus conjecture that the control efficiency should
somehow inversely proportional to the intensity of vort
shedding. The Landau model~see, e.g., Mathiset al.33! char-
acterizes this intensity using the transverse velocityv on the
centerline whose amplitude scales as (Re2Rec)

1/2, where
Rec'46 marks the onset of vortex shedding. Indeed,
observe that the heuristic relation PSR(Re);(Re
2Rec)

21/2 is approximately verified by the PSR values
the two investigated Reynolds numbers. Lower efficiency
the algorithm may thus explain the increase of the optim
rotation amplitude withRe. On the other hand, the prese
algorithm attempts to find the optimal control and from t
study by Heet al.7 it is known that the ‘‘optimal’’ amplitude
for the harmonic rotary control lies in a still higher range

It follows from the above estimate that at much high
Re the efficiency of the algorithm could further drop. Thi
together with its large computational cost~requiring solution
of the Navier–Stokes and the adjoint system several tim
over the optimization interval! makes the algorithm rathe
inapplicable under practical conditions. However, the goa
the present investigation was to use the Optimal Control
proach to assess the fundamental capabilities and limitat
of the rotary control of the unsteady wake. Optimal contr
could be used to extract open–loop control laws, but m
sophisticated reduction techniques are required. Our opt
control algorithm failed to achieve any success in controll
the subcritical flow atRe540. This seems to support th
conjecture that the steady symmetric flow represents
lower bound on the performance of this control configurat
in terms of the functional~5!.

The control configuration investigated in this study co
sists of just a single degree of freedom at every instan
time. This could explain why our optimization procedure r
quired less iterations than in the study by Bewleyet al.,22
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where the dimension of the control was much higher. On
other hand, this can also be the reason why the rotary con
may be less effective than distributed blowing and suction
the latter case the control dimension is much higher and
control possesses more authority over the flow.

One of the novelties of this paper consists in the deri
tion and the solution of the ‘‘vorticity’’ form~16! of the
adjoint problem~9!. When one is using the Vortex Method
this approach leads to important advantages. Finally, we w
to say a few words about further perspectives. Perhap
better performance could be achieved by using a differ
functional not directly linked to drag. It was shown that fo
mulations based on the functional targeting the terminal
netic energy~Bewleyet al. in Ref. 22! or the departure from
some target flow~e.g., Min and Choi in Ref. 24! performed
better than those directly targeting drag. In our case, gi
the relation between vortex shedding and drag, penaliz
the departure from the steady, symmetric basic flow could
an alternative. Furthermore, as shown by Colliset al.,34 the
use of a carefully chosen Hilbert space to extract the grad
can enhance the regularity of the control. Another innovat
would be to consider control of the flow past a noncircu
obstacle. In this case the control would involve not only t
wall-tangential, but also the wall-normal velocity comp
nent.
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APPENDIX: DERIVATION OF THE ADJOINT SYSTEM

As was shown by Abergel and Temam in Ref. 18, t
quantities$w(h);q(h)% appearing in the Gaˆteaux differential
~7! are related to the Fre´chet differential of the mappingẇ
→$V(ẇ);p(ẇ)% and thus can be obtained as the solution
the Navier–Stokes system linearized about the s
$V0(ẇ);p0(ẇ)%

NFw

q
G5F ]w

]t
1~V0•¹!w1~w•¹!V02mDw1¹q

2¹•w
G5F 0

0
G ,

wu t5050 in V, ~A1!

w5ht on G0 , w→0 for uxu→`.

The control perturbationh does not explicitly appear in the
Gâteaux differential~7!, as it enters only through solutions o
~A1!. In order to factor it out we will employ theadjoint
operator N* and theadjoint state$w* ;q* % defined by the
following relation:
IP license or copyright, see http://ojps.aip.org/phf/phfcr.jsp



d-

e

is
a

.
ar

s
l
y

lift

tex

er

x

ly

c-
-

for
-

the

ch.

lds

ex
lop-

ex
J.

w-

h a

rol
der

an-

dy
ch.

el

of
uid

,’’

at

the
and

2086 Phys. Fluids, Vol. 14, No. 7, July 2002 B. Protas and A. Styczek
S NFwqG ,Fw*
q* G D

L2(0,T;L2(V))
5S FwqG ,N* Fw*

q* G D
L2(0,T;L2(V))

1B.

~A2!

Note that sinceN andN* are ‘‘two-element’’ operators, the
scalar products in~A2! are in fact defined on Cartesian pro
ucts of two spacesL2(0,T;L2(V))

S FabG ,Fc
dG D

L2(0,T;L2(V))

5~a,c!L2(0,T;L2(V))1~b,d!L2(0,T;L2(V)) . ~A3!

In ~A2! B stands for the sum of the boundary terms obtain
using integration by parts and the divergence theorem

B52E
0

T R
G0

@~V0w!1~V0w!T#:~w* n!dsdt

2mE
0

T R
G0

$w* •@¹w1~¹w!T#

2w•@¹w* 1~¹w* !T#%ndsdt

2E
0

T R
G0

~qw* 2q* w!•ndsdt

1F E
V

w•w* dVG
t50

t5T

. ~A4!

The symbol ‘‘:’’ denotes contraction of two tensors (A% :B%

5Ai j Bi j ) and(ab) is the dyadic product of the vectorsa and
b @i.e., the tensor (ab) i j 5aibj #. The adjoint state$w* ;q* % is
the solution of the problemadjoint to the linearized Navier–
Stokes system~A1!

N* Fw*
q* G
5F 2

]w*

]t
2V0•@¹w* 1~¹w* !T#2mDw* 1¹q*

2¹•w*
G

5F 0

0
G ,

w* u t5T50 in V, ~A5!

w* 52g on G0 , w* →0 for uxu→`.

In the case of the rotating circular cylinder the control
limited to the tangential boundary velocity. This implies th

~V0•n!uG0
50, ~A6!

~w•n!uG0
50, ~A7!

and the integrals in~A4! which involve these terms vanish
Now the crucial issue is the determination of the bound
condition for the adjoint statew* , i.e., the functiong in ~A5!.
Our choice is motivated by the observation that, ifg is judi-
Downloaded 20 May 2002 to 132.239.20.19. Redistribution subject to A
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ciously matched, then in expression~A4! there appear terms
identical to the ones present in the first part of~7!. It is
straightforward to verify that for the particular choice

g5Vtt1V`5r3~ ẇez!1V` , ~A8!

the boundary terms present in~A4! can be used to re-expres
the Gâteaux differential~7! in such a way that the contro
perturbationh explicitly appears in all the terms. In this wa
we obtain~8!.
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