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Abstract

Spectral stability analysis for solitary waves is developed in context of the Hamiltonian system

of coupled nonlinear Schrödinger equations. The linear eigenvalue problem for a non-self-adjoint

operator is studied with two self-adjoint matrix Schrödinger operators. Sharp bounds on the

number and type of unstable eigenvalues in the spectral problem are found from inertia law for

quadratic forms, associated with the two self-adjoint operators. Symmetry-breaking stability

analysis is also developed with the same method.
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1 Introduction

This paper addresses spectral stability of solitary waves in the system of N coupled nonlinear

Schrödinger (NLS) equations,

i
∂ψn

∂z
+ dn

∂2ψn

∂x2
+ fn(|ψ1|2, ..., |ψN |2)ψn = 0, n = 1, .., N, (1.1)

where ψn(z, x) : R+ × R → C, fn : RN → R, and dn ∈ R. We assume that dn > 0, fn(0, ..., 0) = 0,

n = 1, ..., N , and
∂fn

∂|ψm|2
=

∂fm

∂|ψn|2
, n,m = 1, ..., N. (1.2)

The system (1.1) has the following properties.

(i) The linear spectrum of (1.1) with fn ≡ 0 is uncoupled,

ψn(z, x) =
∫ ∞

−∞
αn(kn)ei(knx+ωn(kn)z)dkn, ωn = −dnk

2
n ≤ 0. (1.3)

(ii) Any solution of (1.1) is invariant with respect to N phase rotations:

ψn(z, x) 7→ eiθnψn(z, x), θn ∈ R, n = 1, ..., N, (1.4)

which are associated with N conserved charge functionals,

Qn =
∫

R
|ψn|2dx, ψn ∈ L2(R), n = 1, ..., N. (1.5)

(iii) Any solution of (1.1) is invariant with respect to space translation:

ψn(z, x) 7→ ψn(z, x− s), s ∈ R. (1.6)

(iv) Any solution of (1.1) is invariant with respect to Galileo translation:

ψn(z, x) 7→ ψn(x− 2vz) eid
−1
n (vx−v2z), v ∈ R. (1.7)

(v) Under the condition (1.2), the system (1.1) conserves the Hamiltonian:

H =
∫

R

[
N∑

n=1

dn

∣∣∣∣∂ψn

∂x

∣∣∣∣2 − U(|ψ1|2, ..., |ψN |2)

]
dx, fn =

∂U

∂|ψn|2
, (1.8)

and the momentum associated with the symmetry (1.6):

P = i

∫
R

[
N∑

n=1

(
ψ̄n
∂ψn

∂x
− ψn

∂ψ̄n

∂x

)]
dx. (1.9)

In this case, the system (1.1) takes the Hamiltonian form in canonical variables u = (u1, ..., uN )T

and w = (w1, ..., wN )T :

d

dz

(
u

w

)
=

1
2
JH ′(u,w), J =

(
ON IN

−IN ON

)
, (1.10)

where (u,w)T : R+ × R → R2N , IN and ON are identity and zero matrices in RN , J + = −J , and

the Hamiltonian H(u,w) follows from (1.8) with ψn = un + iwn and ψ̄n = un − iwn, n = 1, ..., N .
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2 Main formalism

Stationary solutions of the coupled NLS equations (1.1) are defined by the standard ansatz:

ψn(z, x) = Φn(x)eiβnz, (2.1)

where Φn : R → R. Components Φn(x) satisfy the system of equations:

dn
d2Φn

dx2
− βnΦn + fn(Φ2

1, ...,Φ
2
N )Φn = 0, lim

|x|→∞
Φn(x) = 0. (2.2)

Throughout the paper, we will assume that the existence problem has the following solution.

Assumption 2.1 There exists an exponentially decaying solution Φ(x) = (Φ1, ...,ΦN )T ∈ RN ,

Φ ∈ L2(R) in an open domain β = (β1, ..., βN )T ∈ B ⊂ RN . The stationary solution is not

degenerate, such that Φn(x) = 0 only in a finite number of points x ∈ R, n = 1, ..., N . The mapping

β → Φ(x) is C1 on β ∈ B.

Exponentially decaying solutions of (2.2) may exist only if βn > 0 (assuming dn > 0), n = 1, ..., N ,

when components Φn(x) decay asymptotically as

lim
x→±∞

|Φn(x)ean|x| − c±n | = 0, an =
√
βn

dn
(> 0), (2.3)

where c±n are some non-zero constants. The constraint βn > 0 is related to the constraint ωn ≤ 0

in the linear spectrum (1.3). The spectrum of exponentially decaying stationary solutions (2.1) is

isolated from the linear spectrum (1.3), when βn > 0. Otherwise, as it happens for other systems

of coupled NLS equations [PY02], the exponentially decaying solutions become embedded into the

linear spectrum (embedded solitons). Such solutions are semi-stable due to nonlinearity-induced

radiative decay, even if they are linearly stable [PY02]. We note that the algebraically decaying

solutions may also exist in the system (2.2) for βn = 0 and they are embedded into the edge of the

linear spectrum at ωn = 0. We do not consider algebraically decaying solutions in this paper.

Definition 2.2 Families of stationary solutions Φ(x) are classified by the nodal index i = (i1, ..., iN )T ,

where in is the number of zeros of Φn(x) for x ∈ R. The stationary solution Φ(x) with i = 0 is

called the ground state.

Lemma 2.3 Stationary solutions Φ(x) are critical points of the Lyapunov functional:

Λ[ψ] = H[ψ] +
N∑

n=1

βnQn[ψ], (2.4)

where Qn and H are given by (1.5) and (1.8).
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Proof. The first variation of Λ[ψ] vanishes if ψ = Φ(x) satisfies the system (2.2).

Definition 2.4 Suppose the problem (2.2) has a stationary solution Φ(x) in the parameter domain

β ∈ B. Define the energy surface of the stationary solutions,

Λs(β) = Hs(β) +
N∑

n=1

βnQns(β), (2.5)

where Hs(β) = H[Φ] and Qns(β) = Qn[Φ]. The Hessian matrix U of the energy surface Λs(β) is a

symmetric matrix with the elements

Un,m =
∂2Λs

∂βn∂βm
. (2.6)

Lemma 2.5 Matrix elements of the Hessian matrix U are continuous functions of β in B, computed

as

Un,m =
∂Qns

∂βm
= 2〈Φnen,

∂Φ
∂βm

〉. (2.7)

Matrix U in a domain β ∈ B has N real bounded eigenvalues.

Proof. It follows from Lemma 2.3 that

∂Λs

∂βn
= Qns +

(
∂Hs

∂βn
+

N∑
m=1

βm
∂Qms

∂βn

)
= Qns. (2.8)

If Φ ∈ L2(R) and Φ(x) is C1 function of β in B, the second derivatives of Λs(β) exists and equal

to (2.7). Since U is a symmetric matrix with bounded elements, all eigenvalues of U are real and

bounded.

Definition 2.6 Denote the number of negative, zero and positive eigenvalues of U as n(U), z(U),

and p(U), respectively, such that n(U) + z(U) + p(U) = N .

Linearization at the stationary solutions (2.1) is defined by the expansion,

ψn(z, x) = [Φn(x) + Un(z, x) + iWn(z, x)] eiβnz, (2.9)

where (Un,Wn)T ∈ R2 are perturbations functions. Neglecting nonlinear terms, we find that the

perturbation vectors U = (U1, ..., UN )T and W = (W1, ...,WN )T satisfy the linearized system in

Hamiltonian form:
d

dz

(
U

W

)
= J h′(U,W), (2.10)

where the linearized Hamiltonian h(U,W) is the second variation of the Lyapunov functional (2.4):

h =
1
2
δ2Λ = 〈U,L1U〉+ 〈W,L0W〉, (2.11)
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and L0 and L1 are matrix Schrödinger operators with the elements:

(L0)n,m =
(
−dn

d2

dx2
+ βn − fn(Φ2

1, ...,Φ
2
N )
)
δn,m (2.12)

(L1)n,m =
(
−dn

d2

dx2
+ βn − fn(Φ2

1, ...,Φ
2
N )
)
δn,m − 2

∂fn

∂Φ2
m

ΦnΦm. (2.13)

The diagonal operator L0 is a composition of N scalar Schrödinger operators. The matrix operator

L1 is symmetric in the Hamiltonian case (1.2). Both quadratic forms in (2.11) are real-valued.

The linearized problem (2.10) reduces to a linear eigenvalue problem after separation of variables:

U = u(x)eλz, W = w(x)eλz. Eigenvalues λ are defined by the spectrum of the non-self-adjoint

operator A:

A

(
u

w

)
= λ

(
u

w

)
, A =

(
ON L0

−L1 ON

)
. (2.14)

The operator A is defined in L2(R 7→ C2N ), equipped with the inner product,

〈f ,g〉 =
∫

R

(
N∑

n=1

f̄n(x)gn(x)

)
dx. (2.15)

We use standard definitions of eigenvalues of A from [HS96, Definition 1.4].

Definition 2.7 The value λ is an eigenvalue of A if ker(A − λ) 6= {0} in L2(R), such that there

exists a non-zero vector function (u,w)T ∈ ker(A − λ) called an eigenvector of A. The dimension

of ker(A− λ) is called the geometric multiplicity of λ.

Definition 2.8 The discrete spectrum of A, σdis(A) is the set of all eigenvalues of A with finite

algebraic multiplicity which are isolated from the continuous spectrum of A, σcon(A). The embedded

spectrum of A, σemb(A) is the set of all eigenvalues with finite algebraic multiplicity which belong

to the continuous spectrum of A, including the boundary points. The essential spectrum of A is

σess(A) = σcon(A) ∪ σemb(A) and the point spectrum of A is σp(A) = σdis(A) ∪ σemb(A). The total

spectrum of A is σ(A) = σdis(A) ∪ σess(A) = σp(A) ∪ σcon(A).

The continuous spectrum σcon(A) may contain resonances, corresponding to bounded non-decaying

eigenvectors, and semi-eigenvalues, corresponding to eigenvectors, which are decaying at one infinity

and bounded at the other infinity. Definitions of resonances and semi-eigenvalues will be given in

terms of the scattering matrix for the problem (2.14) (see Definition 7.1).

The non-self-adjoint linear eigenvalue problem (2.14) is formulated as a coupled system for two

symmetric matrix Schrödinger operators L0 and L1. Spectrum of these operators is reviewed in the

following statements.
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Lemma 2.9 Let L be a symmetric matrix Schrödinger operator, either L0 or L1. Continuous

spectrum of L has N branches located at

σcon(L) = ∪1≤n≤N{λ ∈ R : λ ≥ βn}. (2.16)

Discrete and embedded spectrum of L has a finite number of eigenvalues located at

σdis(L) = ∪m{λm : λm ∈ R, λ < βmin}, (2.17)

σemb(L) = ∪m{λm : λm ∈ R, βmin ≤ λm < βmax}, (2.18)

where βmin = min1≤n≤N (βn) and βmax = max1≤n≤N (βn). The algebraic multiplicity of eigenvalues

coincides with their geometric multiplicity and is at most N .

Proof. The matrix Schrödinger operator L has exponentially decaying potentials and becomes a

diagonal differential operator in the limit |x| → ∞. As a result, the continuous spectrum of L is

defined by the Weyl’s criterion and the point spectrum of L is finite-dimensional [HS96, Theorem

7.2]. Furthermore, since L is self-adjoint, the algebraic multiplicity of eigenvalues always coincides

with their geometric multiplicity [HS96, Theorem 6.7].

Exponentially decaying solutions of the spectral problem Lu = λu are superposed in the limit

|x| → ∞ over a basis of N vector-functions ene
−bn|x|, n = 1, ..., N , where bn =

√
(βn − λ)/dn. For

λ < βmin, all vector-functions are exponentially decaying and there exist no more than N linearly

independent eigenvectors u(x) for some (isolated) values of λ. This contributes to eigenvalues of

discrete spectrum (2.17). For λ ≥ βmax, all vector functions are non-decaying and no embedded

eigenvalues may exist. For βmin ≤ λ ≤ βmax, some components un(x) are decaying, while the other

components un(x) are non-decaying. Let N1 be the number of non-decaying components. Then,

there exist N1 branches of the continuous spectrum of L at this value of λ, and an embedded

eigenvalue (if it exists) corresponds to at most N −N1 linearly independent decaying eigenvectors

u(x).

Lemma 2.10 The kernel of L0 has a basis of N eigenvectors {Φn(x)en}N
n=1. The kernel of L1 has

at least one eigenvector Φ′(x).

Proof. The eigenvectors of the kernels of L0 and L1 are generated by the rotational and trans-

lational invariance (1.4) and (1.6), respectively. It follows from Lemma 2.9 that the eigenvectors

{Φn(x)en}N
n=1 form a basis in the kernel of L0, when Φn(x) = 0 only in a finite number of points

x ∈ R, n = 1, ..., N .

Definition 2.11 Denote the number of negative and zero eigenvalues of the discrete spectrum of

operator L in L2(R) as n(L) and z(L), respectively. The Morse index for stationary solutions is

n(h) = n(L1) + n(L0). (2.19)
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Lemma 2.12 The negative index of L0 is

n(L0) =
N∑

n=1

in, (2.20)

where in is the number of zeros of Φn(x) for x ∈ R. The negative index n(L0) and the nodal index

i = (i1, ..., iN )T remain fixed in the open domain β ∈ B.

Proof. Since L0 is a diagonal composition of scalar Schrödinger operators, Sturm Oscillation

Theorem applies. Each operator (L0)n,n has a zero bound state Φn(x), such that n((L0)n,n) = in.

Eigenvectors {Φn(x)en}N
n=1 form a basis in the kernel of L0, when Φn(x) = 0 only in finite number

of points x ∈ R, and therefore, the index n(L0) remains fixed for any continuous deformations of

Φ(x) in β ∈ B.

We finish this section with some general properties of the eigenvalue problem (2.14).

Lemma 2.13 If λ is an eigenvalue of (2.14), so are (−λ), λ̄, and (−λ̄).

Proof. This standard result for linear Hamiltonian systems follows from the fact that if (u,w) is

the eigenvector of (2.14) with λ, then (u,−w), (ū, w̄), and (ū,−w̄) are eigenvectors of (2.14) with

(−λ), λ̄, and (−λ̄), respectively.

Definition 2.14 The stationary solution (2.1) is spectrally unstable if there exists at least one

eigenvalue λ such that Re(λ) > 0. It is weakly spectrally stable if all eigenvalues λ are zero or purely

imaginary.

Spectral instability occurs when the eigenvalue problem (2.14) has a pair of real eigenvalues (λ,−λ)

or a quadruple of complex eigenvalues (λ, λ̄,−λ,−λ̄). Weak spectral stability does not yet guarantee

strong spectral stability, since there may exist eigenvalues of higher algebraic multiplicity with

Re(λ) = 0, which lead to nonlinear instability of stationary solutions [CP03]. We shall study here

the generic case, when no structurally unstable eigenvalues exist in the problem (2.14).

Assumption 2.15 (i) The end points λ = ±iβn, n = 1, ..., N are not resonances, (ii) σess(A)

does not include semi-eigenvalues or embedded eigenvalues, (iii) σdis(A) does not include non-zero

eigenvalues of higher algebraic multiplicity, (iv) z(L1) = 1, and (v) z(U) = 0.

Bifurcations in the spectrum of A may occur when Assumption 2.15 is violated. Bifurcations in the

eigenvalue problem (2.14) will be studied elsewhere.
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Lemma 2.16 Define the constrained function space Xc(R) = X
(u)
c ⊕X

(w)
c , where

X(u)
c =

{
u ∈ L2(R) : 〈Φnen,u〉 = 0, n = 1, ..., N

}
, (2.21)

X(w)
c =

{
w ∈ L2(R) : 〈Φ′,w〉 = 0

}
. (2.22)

Eigenvectors (u,w)T in the problem (2.14) for λ 6= 0 belongs to the space Xc(R).

Proof. The linear eigenvalue problem (2.14) is written as a coupled system:

L1u = −λw, L0w = λu. (2.23)

The constraints in (2.21)–(2.22) follow from the Fredholm’s Alternative Theorem applied to (2.23)

for λ 6= 0 with the set of eigenvectors {Φn(x)en}N
n=1 of the kernel of L0 and with the eigenvector

Φ′(x) of the kernel of L1.

Lemma 2.17 When z(L1) = 1 and z(U) = 0, the geometric multiplicity of the null eigenvalue of

A is exactly (N + 1) and the algebraic multiplicity of the null eigenvalue of A is exactly (2N + 2).

Proof. The null space of A is spanned by at least (N + 1) eigenvectors:(
u

w

)
=


{(

0N

Φn(x)en

)}N

n=1

,

(
Φ′(x)

0N

) . (2.24)

The generalized null space of A includes at least (N + 1) generalized eigenvectors:(
u

w

)
=


{(

∂Φ
∂βn

0N

)}N

n=1

,

(
0N

−1
2xD

−1Φ(x)

) , (2.25)

where D is a diagonal matrix of (d1, ..., dN ). It follows from Lemma 2.10 that the (N+1) eigenvectors

(2.24) form a basis for null space of A, when z(L1) = 1. Fredholm’s Alternative Theorem applied

to the first N generalized eigenvectors in (2.25) fail, when z(U) = 0, i.e. no second generalized

eigenvectors exist, see [S00]. Fredholm’s Alternative Theorem always fails for the last generalized

eigenvector in (2.25) [S00].

Corollary 2.18 When z(L1) = 1 and z(U) = 0, the generalized eigenvectors (2.25) do not belong

to the constrained space Xc(R), defined by (2.21)–(2.22).

3 Main results

Stability of solitary waves in nonlinear Schrödinger (NLS) equations was studied extensively in the

recent past. The first stability-instability theorem for a scalar NLS equation (1.1) with N = 1
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was proven by Shatah and Strauss [SS85] and Weinstein [W86]. Only positive stationary solutions

(ground states) were considered in one, two, and three spatial dimensions. Ground states have

the nodal index i = 0 and the Morse index n(h) = 1. A single negative eigenvalue of h does not

necessary lead to spectral instability in the linearized problem (2.14) because of the constraints in

(2.21)–(2.22). If p(U) = 0, the stationary solution Φ(x) is spectrally unstable and the linearized

problem (2.14) has a single real positive eigenvalue λ. If p(U) = 1, the solitary wave is weakly

spectrally stable and all eigenvalues λ are purely imaginary [SS85, W86].

More formal and general analysis was developed by Grillakis, Shatah and Strauss [GSS87, GSS90]

by using multi-dimensional Lie groups and spectral decompositions. The following theorems were

proven for an abstract Hamiltonian system with symmetries, which includes the system of coupled

NLS equations (1.10).

Theorem 1 [GSS90] Let z(U) = 0, then p(U) ≤ n(h). A stationary solution (2.1) is weakly

spectrally stable if n(h) = p(U) and it is spectrally unstable if n(h) − p(U) is odd. The linearized

problem (2.14) has at least one real positive eigenvalue λ if n(h)− p(U) is odd.

Theorem 2 [GSS90] The linearized problem (2.14) has at most n(h) unstable eigenvalues λ such

that Re(λ) > 0.

Theorem 3 [GSS90] The linearized Hamiltonian h in constrained space Xc(R) has the negative

index #<0(h) = n(h)− p(U)− z(U) and the null index #=0(h) = z(h) + z(U).

Theorem 1 is the main stability–instability theorem in [GSS90]. Theorem 2 is formulated in [GSS90,

Theorem 5.8] for a quadrant: Re(λ) < 0, Im(λ) > 0. The method of the proof can however be

applied to the left half-plane Re(λ) < 0, or equivalently, to the right half-plane Re(λ) > 0. Theorem

3 is formulated in [GSS90, Theorem 3.1] as a more general statement, which is equivalent to Theorem

3 under Assumption 2.1 (z0 = 0 in notations of [GSS90]).

Theorem 1 generalizes stability-instability theory in finite-dimensional Hamiltonian systems with

symmetries [M85]. Since the positive ground state (2.1) with N = 1 has always indices n(L1) = 1

and n(L0) = 0, its stability and instability is uniquely described by Theorem 1. However, many

examples showed insufficiency of Theorem 1 for complete stability-instability analysis. For instance,

a scalar NLS equation in two dimensions has radially symmetric multiple pulses with the nodal

index i > 0 and the Morse index n(h) ≥ 1+2i [J88a]. When p(U) = 1 and n(h)− p(U) ≥ 2i is even,

Theorem 1 can not be applied.

While a simple application of Theorem 1 to the case of multicomponent stationary solutions (2.1)

with N > 1 is given in [GSS90, Theorem 9.1], we note that Theorem 9.1 in [GSS90] derives a scalar

stability criterion, computed from the minimal value βmin = min1≤n≤N (βn). The scalar criterion
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generally fails for N > 1, as the Morse index n(h) of the stationary solution (2.1) is assumed to be

one in [GSS90], which does not generally hold for N > 1.

More special instability theorems were found by Jones [J88a, J88b] and Grillakis [G88, G90] for the

scalar NLS equation (1.1) with N = 1. Jones [J88a, J88b] used topological and shooting methods

of dynamical systems theory. When n(L1) − p(U) > n(L0), theorems in [J88a, J88b] predict an

unstable eigenvalue, no matter whether n(h) is odd or even. The results apply to instability of

radially symmetric solutions with nodal index i > 0 in two spatial dimensions [J88a], as well as

to stability–instability of symmetric and anti-symmetric solutions in the NLS equation with x-

dependent nonlinear function f = f(x; |ψ|2) [J88b].

Theorem 4 [J88a, J88b] The linearized problem (2.14) with N = 1 has a real positive eigenvalue

λ if |n(L1)− n(L0)| > 1.

Grillakis [G88, G90] used theory of linear operators, orthogonal projections and quadratic forms and

proved some general results for the linearized problem (2.14). In this context, the problem (2.14)

is reformulated as a generalized eigenvalue problem for operators L1 and L−1
0 . When n(L0) = 0,

unstable eigenvalues λ may occur only as real positive eigenvalues [G88]. When n(h)−p(U) > 1 and

n(L0) 6= 0, complex unstable eigenvalues λ may also occur in the linearized problem (2.14) [G90].

Theorem 5 [G88] Let #<0(L1) and #<0(L0) be the negative indices of operators L1 and L0 in

X
(u)
c (R). The linearized problem (2.14) has at least |#<0(L1) −#<0(L0)| real positive eigenvalues

λ. If #<0(L0) = 0, the linearized problem has exactly #<0(L1) real positive eigenvalues λ.

Theorem 5 is formulated in [G88, Theorem 1.2]. The theorem is more precise and general compared

to Theorem 4, the latter takes the worst case, when p(U) = 1 for N = 1. It remains unclear how

Theorem 5, which exploits a special structure of the linearized problem (2.14), is related to general

Theorem 1 for an abstract Hamiltonian system. It also remains unclear how the bounds on the

number of unstable eigenvalues can be extended in the case of complex eigenvalues in the linearized

problem (2.14).

We shall revisit here the problem of spectral stability of stationary solutions (2.1) in the coupled NLS

equations (1.1) with N ≥ 1. We develop two new methods of analysis: (i) negative eigenvalues of a

constrained spectral problem are counted from matrix analysis and (ii) the negative subspace of a

linear differential matrix operator with positive continuous spectrum is proved to be invariant in two

diagonal representations. The first method develops the matrix variant of the Vakhitov–Kolokolov

method, previously studied in [PK00]. The second method develops the Sylvester’s Inertia Theorem

for quadratic forms associated with finite-dimensional (matrix) operators [G61], applied to finite-

dimensional Hamiltonian systems in [M88]. The new methods of analysis are used to prove the

following main results.
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Theorem 6 (Negative index of constrained operators) Operator L1 in constrained space X(u)
c (R)

has exactly #<0(L1) = n(L1)− p(U)− z(U) negative eigenvalues and #=0(L1) = z(L1) + z(U) zero

eigenvalues. Operator L0 in the constrained space X(u)
c (R) has exactly #<0(L0) = n(L0) negative

eigenvalues.

Corollary 3.1 Let z(U) = 0. Then, p(U) ≤ n(L1).

Theorem 7 (Closure relation for negative index) Assume that Assumption 2.15 is satisfied.

Let Nreal be the number of real positive eigenvalues λ of the problem (2.14), 2Ncomp be the number

of complex eigenvalues λ with Re(λ) > 0, and 2N−
imag be the number of purely imaginary eigenvalues

λ with 〈u,L1u〉 = 〈w,L0w〉 < 0. Dimension of the negative subspace of the linearized Hamiltonian

h in Xc(R) is invariant as

#<0(h) = n(L1)− p(U) + n(L0) = Nreal + 2Ncomp + 2N−
imag. (3.1)

Theorem 8 (Bounds on unstable eigenvalues) Assume that Assumption 2.15 is satisfied. The

linearized problem (2.14) has Nunst = Nreal + 2Ncomp unstable eigenvalues λ with Re(λ) > 0, such

that

(i) |n(L1)− p(U)− n(L0)| ≤ Nunst ≤ (n(L1)− p(U) + n(L0)), (3.2)

(ii) Nreal ≥ |n(L1)− p(U)− n(L0)|, (3.3)

(iii) Ncomp ≤ min (n(L0), n(L1)− p(U)) . (3.4)

Corollary 3.2 Let z(U) = 0. When n(L0) = 0, the linearized problem (2.14) has exactly Nreal =

n(L1)−p(U) real positive eigenvalues λ. If both n(L0) = 0 and n(L1) = p(U), the stationary solution

(2.1) is weakly spectrally stable.

Theorem 6 decomposes general Theorem 3 in the case, when h is a sum of two quadratic forms

for L1 and L0 as in (2.11). As a result, the upper bound on p(U) of Theorem 1 is improved as

p(U) ≤ n(L1) ≤ n(h), as in Corollary 3.1. Also the stability criterion of Theorem 1 decomposes into

two conditions: n(L1) = p(U) and n(L0) = 0, as in Corollary 3.2.

Theorem 7 gives a precise statement of the closure relation between indices n(L0), n(L1) and p(U)

on one side and Nreal, Ncomp and N−
imag on the other side. This theorem generalizes earlier results

for #<0(L1) = #<0(L0) formulated in [G88, Theorem 1.3] (when Ncomp = N−
imag = 0) and in [G90,

Theorem 2.3] (when Nreal = N−
imag = 0).

Theorem 8 is a corollary of Theorems 5, 6, and 7. The lower bound in (3.2) is identical to that in

Theorem 5 in view of Theorem 6. The upper bound in (3.2) improves Theorem 2. Theorem 8 also

agrees with the instability criterion of Theorem 1. Let z(U) = 0 and m = n(L1)− p(U) + n(L0) be
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odd. Then |n(L1) − p(U) − n(L0)| = |m − 2n(L0)| > 0 and Nunst > 0. Therefore, Theorem 8 also

guarantees instability for odd m, as Theorem 1.

When L1 and L0 are finite-dimensional operators, Theorems 6, 7, and 8 reduce to stability-instability

theorems for critical points in finite-dimensional Hamiltonian systems with symmetry constraints

[M85, M88]. When n(L0) = 0, the quadratic form 〈W,L0W〉 in (2.11) is equivalent to a positive-

definite kinetic energy, while the quadratic form 〈U,L1U〉 in (2.11) is equivalent to a sign-indefinite

potential energy. The Morse index of L1 under constraints (2.21) is #<0(L1) = n(L1)−p(U)−z(U).

When n(L0) = 0, the Morse index defines uniquely the unstable subspace of the linearized system

according to Corollary 3.2. When n(L0) > 0 and both L0 and L1 are not positive definite, complex

instabilities may occur and they are defined by Theorems 7 and 8.

In the end of this section, we show that the constraint (2.22) does not appear in Theorems 6, 7, and

8, due to Galileo invariance (1.7). A general family of stationary solutions is defined as

ψn(z, x) = Ψn(x− 2vz − s)eiωnz+iθn . (3.5)

The general stationary solutions (3.5) are critical points of the Lyapunov functional in the form:

Λ[ψ] = H[ψ] +
N∑

n=1

ωnQn[ψ] + vP [ψ], (3.6)

where Qn and P are given by (1.5) and (1.9). The general Hessian matrix UH has the structure:

UH =

[
U ∂Qs

∂v
∂QT

s
∂v

∂Ps
∂v

]
, (3.7)

where Qs = (Q1s, ..., QNs)
T , Qns(ω, v) = Qn[Ψ], and Ps(ω, v) = P [Ψ]. It follows from Galileo

invariance (1.7) that a transformation,

Ψn(x) = Φn(x)eid
−1
n vx, ωn = βn +

v2

dn
, (3.8)

expresses Qns(ω, v), Ps(ω, v) as functions of β:

∂Qns

∂v
(ω, v) = −

N∑
m=1

2v
dm

∂Qms

∂βn
(β), (3.9)

∂Ps

∂v
(ω, v) = −

N∑
n=1

2
dn
Qns(β) +

N∑
n=1

N∑
m=1

4v2

dndm

∂Qms

∂βn
(β). (3.10)

As a result, the quadratic form for x ∈ RN+1 transforms to a quadratic form for y ∈ RN as

〈x,UHx〉RN+1 = 〈y,Uy〉RN −

(
N∑

n=1

2Qns

dn

)
x2

N+1, (3.11)

where

yn = xn −
2v
dn
xN+1, n = 1, ..., N,
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and

〈a,b〉RN =
N∑

n=1

anbn. (3.12)

The additional eigenvalue for xN+1 is always negative, such that p(UH) = p(U) and z(UH) = z(U).

Therefore, stability theorems are not affected by the constraint (2.22), due to Galileo invariance

(1.7).

4 Eigenvalues of constrained spectral problems for L1 and L0

Here we prove Theorem 6 by counting eigenvalues of constrained spectral problems for L1 and L0

from matrix analysis. This method was announced in [PK00]. Constrained spectral problems were

also considered in [BP93, G88].

Given the spectrum of L1 and L0 in L2(R), we study the spectrum of operators L1 and L0 in

X
(u)
c (R), defined by (2.21). The constrained space X(u)

c (R) is an orthogonal compliment of the

kernel of L0 in L2(R). The spectrum of L1 and L0 is complete in X(u)
c (R), due to the abstract result

in [HS96, Proposition 2.7].

Proposition 4.1 [HS96] Let M be a closed subspace of a Hilbert space H and M⊥ be the orthogonal

complement of M in H, such that M⊥ = {x ∈ H : 〈x,m〉 = 0 ∀m ∈ M}. The subset M⊥ is a

closed subspace of H and is therefore a Hilbert space.

Proposition 4.2 Let negative eigenvalues of L0 in X
(u)
c (R) be defined by the problem:

L0u = λu, u ∈ X(u)
c (R), λ < 0. (4.1)

Then, #<0(L0) = n(L0).

Proof. Eigenvectors of L0 for negative eigenvalues λ are orthogonal to the eigenvectors {Φn(x)en}N
n=1

of the kernel of L0. Therefore, they belong to X(u)
c (R).

Proposition 4.3 Let z(L1) = 1. Let negative and zero eigenvalues of L1 in X
(u)
c (R) be defined by

the problem:

L1u = λu−
N∑

m=1

νmΦm(x)em, u ∈ X(u)
c (R), λ ≤ 0, (4.2)

where ν1,...,νN are Lagrange multipliers. Then, #<0(L1) = n(L1) − p(U) − z(U) and #=0(L0) =

1 + z(U).

In order to prove Proposition 4.3, we introduce some notations. We denote negative eigenvalues

of L1 in L2(R) as λ−k with orthonormal eigenvectors u−k(x), accounting their multiplicity. We
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order negative eigenvalues from the minimal eigenvalue λ−n(L1) to the maximal eigenvalue λ−1 < 0.

We also write spectral decomposition in L2(R) as a sum of three terms
∑

λ−k<0,
∑

λ−k=0, and∑
λ−k>0, where

∑
λ−k<0 denotes n(L1) terms from negative discrete spectrum of L1,

∑
λ−k=0 denotes

z(L1) = 1 term from the kernel of L1, and
∑

λk>0 denotes positive spectrum of L1.

When ker(L1 − λ) = {0} in L2(R), the constrained spectral problem (4.2) has a solution only if

there exists a non-zero solution of the homogeneous linear system for ν1,...,νN :

N∑
m=1

〈Φnen, (λ− L1)
−1 Φmem〉νm = 0, n = 1, ..., N. (4.3)

By spectral calculus [RS78], the linear system (4.3) is equivalent to zero eigenvalues of the matrix

A(λ) with the elements,

An,m(λ) =
∑

λ−k<0

〈Φnen,u−k〉〈u−k,Φmem〉
λ− λ−k

+
∑
λk>0

〈Φnen,uk〉〈uk,Φmem〉
λ− λk

, (4.4)

where we have used that 〈Φ′(x),Φmem〉 = 0. When there exists a zero eigenvalue of A(λ), there

exists a solution u ∈ X(u)
c (R), which is represented with the spectral decomposition in L2(R):

u(x) =
N∑

m=1

νm

 ∑
λ−k<0

〈u−k,Φmem〉
λ− λ−k

u−k(x) +
∑
λk>0

〈uk,Φmem〉
λ− λk

uk(x)

 . (4.5)

Several lemmas follow from analysis of eigenvalues of A(λ).

Lemma 4.4 The matrix eigenvalue problem A(λ)ν = α(λ)ν, λ ∈ R has N real eigenvalues α1(λ),

..., αN (λ), which are meromorphic functions of λ.

Proof. The matrix A(λ) has N real eigenvalues α(λ) since it is Hermitian for λ ∈ R and

λ < 0. Coefficients of A(λ) have pole singularities at λ = λ−k for λ ≤ 0, unless 〈Φnen,u−k〉 = 0,

n = 1, ..., N . Since Φn ∈ L2(R), u ∈ L2(R), and 〈Φnen,u〉 <∞, the series for An,m(λ) are bounded

and converge for λ 6= λ−k. In the limit λ→ −∞, An,m(λ) converges to zero uniformly. As a result,

all eigenvalues αn(λ), n = 1, ..., N are meromorphic functions for λ ≤ 0, which may have only pole

singularities at λ = λ−k.

Lemma 4.5 Eigenvalues α1(λ), ..., αN (λ) are decreasing functions of λ in the domain D = {λ ≤
0 : λ 6= λ−k, k = 1, ..., n(L1)}. All eigenvalues αn(λ), n = 1, ..., N are negative for λ < λ−n(L1).

Proof. For Hermitian matrices, the set of eigenvalues {αn(λ)}N
n=1 corresponds to the set of

orthonormal eigenvectors {ν(n)}N
n=1 such that 〈ν(n′),ν(n)〉CN = δn′,n, where 〈f ,g〉CN =

∑N
n=1 f̄ngn.

We construct quadratic forms associated to the eigenvalue-eigenvector pairs (αn,ν(n)), n = 1, ..., N :

αn(λ) = 〈ν(n),A(λ)ν(n)〉CN , α′n(λ) = 〈ν(n),A′(λ)ν(n)〉CN . (4.6)

14



Computing the derivative of A′(λ), we rewrite the second equality in (4.6) as

α′n(λ) = −

 ∑
λ−k<0

b−k

(λ− λ−k)2
+
∑
λk>0

bk
(λ− λk)2

 = −〈u(n),u(n)〉 < 0, (4.7)

where u(n)(x) corresponds to ν = ν(n) and

b±k =

∣∣∣∣∣
N∑

m=1

〈Φmem,u±k〉ν(n)
m

∣∣∣∣∣
2

≥ 0. (4.8)

As a result, all eigenvalues αn(λ), n = 1, ..., N are decreasing functions of λ in the domain D. In

order to prove that all eigenvalues αn(λ), n = 1, ..., N are negative for λ < λ−n(L1), we find from

(4.3) and (4.4) that

lim
λ→−∞

(λAn,m(λ)) = 〈Φnen,Φmem〉 = Qnsδn,m, (4.9)

where Qns(β) = Qn(Φ) is defined by (1.5). It follows from the first equality in (4.6) and (4.9) that

lim
λ→−∞

λαn(λ) = Qns(β) > 0, n = 1, ..., N,

such that limλ→−∞ αn(λ) = −0, n = 1, ..., N . Since eigenvalues α(λ) are continuous and decreasing

for λ < λ−n(L1), they remain negative for all values of λ < λ−n(L1).

Lemma 4.6 Let λ−k be a negative eigenvalue of L1 in L2(R) with multiplicity q−k, such that q‖−k

eigenvectors u−k(x) belong to the constrained space X(u)
c (R) and q⊥−k = (q−k − q

‖
−k) eigenvectors

u−k(x) belong to the orthogonal compliment of X(u)
c (R) in L2(R). There exist (N−q⊥−k) eigenvalues

αn(λ) that are continuous at λ = λ−k and q⊥−k eigenvalues αn(λ) that have infinity discontinuities,

jumping from negative infinity for λ = λ−k − 0 to positive infinity for λ = λ−k + 0.

Proof. In the limit λ→ λ−k, we find that

lim
λ→λ−k

(λ− λ−k)An,m(λ) =
q−k∑
r=1

〈Φnen,u−kr〉〈u−kr ,Φmem〉 =
q⊥−k∑
r=1

〈Φnen,u−kr〉〈u−kr ,Φmem〉. (4.10)

Denote B−k = limλ→λ−k
(λ− λ−k)A(λ). The quadratic form 〈ν,B−kν〉CN is diagonalized in normal

variables,

xr =
N∑

m=1

〈u−kr ,Φmem〉νm,

such that 〈ν,B−kν〉CN =
∑q⊥−k

r=1 |xr|2. Therefore, the matrix B−k has exactly q⊥−k positive eigenvalues

and (N − q⊥−k) zero eigenvalues. Positive eigenvalues of B−k correspond to q⊥−k eigenvalues αn(λ)

jumping from negative infinity for λ = λ−k− 0 to positive infinity for λ = λ−k +0. Zero eigenvalues

of B−k correspond to (N − q⊥−k) eigenvalues αn(λ) that are continuous and have convergent Taylor

series at λ = λ−k.
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Lemma 4.7 At λ = 0, there exist p(U) positive, z(U) zero, and n(U) negative eigenvalues αn(0),

n = 1, ..., N .

Proof. At λ = 0, the constrained eigenvalue problem (4.2) has an exact solution in L2(R):

uλ=0(x) =
N∑

m=1

νm
∂Φ(x)
∂βm

+ c0Φ′(x), (4.11)

where c0 is not defined and

L1
∂Φ
∂βm

= −Φm(x)em. (4.12)

Substituting (4.11) into (2.21), we find that A(0) = 1
2U , where U is defined in (2.7).

Proof of Proposition 4.3. We consider eigenvalues αn(λ), n = 1, ..., N as meromorphic functions

of λ for λ ≤ 0. Starting with small negative values at λ → −∞, eigenvalues αn(λ), n = 1, ..., N

decrease as λ increases toward n(L1) pole singularities at λ = λ−k. At each pole singularity,

q⊥−k eigenvalues α(λ) jump and pop up to the positive half-plane. The total number of jumping

eigenvalues for λ < 0 is
∑

λ−k<0 q
⊥
−k. Only jumping eigenvalues may cross the value α(λ) = 0, which

corresponds to a negative eigenvalue λ of the constrained problem (4.2) in space X(u)
c (R). We find

the total number of zeros of α(λ) at λ ≤ 0 from Lemma 4.7 as∑
λ−k<0

q⊥−k − p(U).

At each λ = λ−k, there are q‖−k eigenfunctions u−k(x) that lie in the constrained space X(u)
c (R).

Therefore, the total number of eigenvalues λ in X(u)
c (R) for λ ≤ 0 is∑

λ−k

q⊥−k − p(U) +
∑
λ−k

q
‖
−k =

∑
λ−k

q−k − p(U) = n(L1)− p(U).

Subtracting the number z(U) of zero eigenvalues at λ = 0, we prove the lemma.

Proposition 4.8 Let U be the Hessian matrix with bounded eigenvalues. The kernel of L1 in L2(R)

lies in X
(u)
c (R) for any 1 ≤ z(L1) ≤ N .

Proof. Suppose there exists an eigenvector u0(x) of the kernel of L1 in L2(R) such that u0 /∈
X

(u)
c (R). It follows from Lemma 4.6 that there exists an eigenvalue αn(λ) that diverges at λ→ −0.

It contradicts Lemma 4.7 since all eigenvalues of U are bounded.

Theorem 6 is proved with Propositions 4.2, 4.3, and 4.8. Using Theorem 6 and Proposition 4.1, we

formulate the following proposition.
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Proposition 4.9 Let L be a symmetric matrix Schrödinger operator, either L0 or L1. There exists

L-invariant decomposition in X
(u)
c (R), such that

∀u ∈ X(u)
c (R) : u(x) =

#<0(L)∑
m=1

amum(x) +
#=0(L)∑

m=0

bmum(x) + u+(x), (4.13)

where um(x) are eigenvectors of L in X
(u)
c (R) for negative and zero eigenvalues, and 〈u+,Lu+〉 ≥

c〈u+,u+〉, c > 0. The quadratic form for L is diagonalized as follows,

〈u,Lu〉 =
#<0(L)∑

m=1

λm|am|2 + 〈u+,Lu+〉. (4.14)

5 Eigenvalues of the linearized problem for A

Here we study the spectrum of the non-self-adjoint linearized problem (2.14) with the simultaneous

diagonalization of two self-adjoint operators L1 and L0. Similar studies were also considered in

[G88, G90] but inertia law of matrix analysis was not exploited previously.

Lemma 5.1 There exists a mapping γ = −λ2 of the non-zero spectrum of A in Xc(R) to the

non-zero spectrum of the problem,

L1u = γL−1
0 u, u ∈ X(u)

c (R). (5.1)

Proof. Eigenvectors {Φn(x)en}N
n=1 form a basis in the kernel of L0. The operator L0 is invertible

iff u ∈ X(u)
c (R). It follows from (2.23) that w = λL−1

0 u, such that the problem (2.23) is equivalent

to (5.1) for any λ 6= 0. Two eigenvectors (u,w)T and (u,−w)T of A in Xc(R) corresponds to a

single eigenvector u of the problem (5.1) in X(u)
c (R).

Corollary 5.2 Let γ = γm be a non-zero eigenvalue of (5.1) with the eigenvector u = um(x) in

X
(u)
c (R), such that

〈um,L1um〉 = γm〈um,L−1
0 um〉. (5.2)

Eigenvalue γm is real if either L1 or L0 is positive definite.

The problem (5.1) is a classical problem of simultaneous diagonalization of two self-adjoint operators

L1 and L−1
0 . Each operator can be orthogonally diagonalized due to Proposition 4.9. However, the

orthogonal diagonalization (4.14) is relevant for the problem (5.1) only if the operators L1 and L−1
0

commute, such that there exists a common basis for 〈u,L1u〉 and 〈u,L−1
0 u〉 [G61]. Since operators

L1 and L−1
0 do not commute, eigenvectors of L1 and L−1

0 in X
(u)
c (R) do not generate eigenvectors

of the problem (5.1). Moreover, complex eigenvalues and multiple eigenvalues with higher algebraic

multiplicity may generally occur in the problem (5.1).
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Lemma 5.3 The spectrum of (5.1) is real if Φ(x) is the ground state with Φn(x) > 0 ∀x ∈ R,

n = 1, ..., N . Moreover, the positive-definite operator L0 can be factorized as L0 = S+S, where S is

a diagonal operator with the elements:

Sn,m =
√
dn

(
Φ′n(x)
Φn(x)

− d

dx

)
δn,m. (5.3)

Proof. The factorization formula (5.3) follows from explicit computations:

S+
n,nSn,n = dn

(
Φ′′n
Φn

− d2

dx2

)
= (L0)n,n.

Using the transformation u = S+v, we rewrite (5.1) in the form

SL1S+v = γv.

Since SL1S+ is a self-adjoint operator, all eigenvalues γ are real. It is also clear from (5.3) that the

kernel of S+ is empty, such that the transformation u = S+v is invertible.

Lemma 5.4 Let γ = γk = γRk + iγIk be a complex eigenvalue of (5.1) such that γRk, γIk 6= 0, with

a complex-valued eigenvector uk(x) = uRk(x) + iuIk(x). A linear combination of two real-valued

eigenvectors u(x) = akuRk(x) + bkuIk(x) diagonalizes the quadratic forms 〈u,L1u〉 and 〈u,L−1
0 u〉

with respect to Jordan blocks,

〈u,L1u〉 = aT
k γ̂k l̂kak, 〈u,L−1

0 u〉 = aT
k l̂kak, (5.4)

where ak = (ak, bk)T ,

γ̂k =

(
γRk −γIk

γIk γRk

)
, l̂k =

(
lRk lIk

lIk −lRk

)
, (5.5)

and

lRk = 〈uRk,L−1
0 uRk〉 = −〈uIk,L−1

0 uIk〉, (5.6)

lIk = 〈uIk,L−1
0 uRk〉 = 〈uRk,L−1

0 uIk〉. (5.7)

Proof. Since the quadratic forms 〈uk,L1uk〉 and 〈uk,L−1
0 uk〉 in (5.2) are real-valued, the eigen-

values γk can be complex only if

〈uk,L1uk〉 = 〈uk,L−1
0 uk〉 = 0. (5.8)

The zero inner product (5.8) for L−1
0 results in relations (5.6) and (5.7). The Jordan blocks (5.4)–

(5.5) follow from direct computations.
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Lemma 5.5 Let γ = γm be a real eigenvalue of (5.1) with a single real-valued eigenvector um(x)

in X
(u)
c (R). The eigenvalue γ = γm is a multiple eigenvalue of higher algebraic multiplicity if and

only if

lm = 〈um,L−1
0 um〉 = 0. (5.9)

Proof. The eigenvalue γ = γm is a degenerate eigenvalue of higher algebraic multiplicity if and

only if there exists a solution of the derivative problem:

L1u′m = γmL−1
0 u′m + L−1

0 um, u′m ∈ X(u)
c (R). (5.10)

Using the Fredholm Alternative Theorem with um(x), we arrive to the condition (5.9).

A complex eigenvalue γ = γk = γRk + iγIk, such that γRk, γIk 6= 0, with a single complex-valued

eigenvector uk(x) = uRk(x) + iuIk(x) is a multiple eigenvalue of higher algebraic multiplicity if and

only if lRk = lIk = 0 in (5.6)–(5.7). According to Assumption 2.15(iii), we consider the generic case

when non-zero eigenvalues of higher algebraic multiplicity do not occur in the problem (5.1).

Lemma 5.6 Assume that σdis(A) does not include non-zero eigenvalues of higher algebraic multi-

plicity. Eigenvectors um(x) for real eigenvalues γm and (uRk(x),uIk(x)) for complex eigenvalues

γk = γRk + iγIk are orthogonal with respect to operator L−1
0 ,

〈um′ ,L−1
0 um〉 = lmδm′,m, (5.11)

and

〈uRk′ ,L−1
0 uRk〉 = −〈uIk′ ,L−1

0 uIk〉 = lRkδk′,k,

〈uIk′ ,L−1
0 uRk〉 = 〈uRk′ ,L−1

0 uIk〉 = lIkδk′,k, (5.12)

where lm 6= 0 and |lRk|2 + |lIk|2 6= 0.

Proof. Orthogonality relations (5.11) and (5.12) for eigenvectors of the problem (5.1) follow from

the identity:

(γm′ − γm) 〈um′ ,L−1
0 um〉 = 0. (5.13)

Coefficients lm and |lRk|2 + |lIk|2 are non-zero due to Lemma 5.5, since γm and γk = γRk + iγIk are

not eigenvalues of higher algebraic multiplicity.

Corollary 5.7 The set of eigenvectors um(x) and (uRk(x),uIk(x)) is also orthogonal with respect

to operator L1.
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We shall also consider the quadratic forms 〈u,L1u〉 and 〈u,L−1
0 u〉 for eigenvectors of the continuous

spectrum of the problem (5.1). Let us introduce the A-invariant decomposition of X(u)
c (R) into the

discrete part for σp(A) and the continuous part Y (u)
c (A) for σcon(A):

X(u)
c (R) =

∑
λ∈σp(A)

Ng(A− λ)⊕ Y (u)
c (A), Y (u)

c (A) =

 ∑
λ∈σp(A)

Ng(A∗ − λ)

⊥ , (5.14)

where A∗ is adjoint operator and σp(A∗) = σp(A). Using Assumption 2.15(i)–(ii), we have the

following proposition.

Proposition 5.8 Assume that the end points λ = ±iβn, n = 1, ..., N are not resonances and

σess(A) does not include semi-eigenvalues nor embedded eigenvalues. The quadratic forms 〈u,L1u〉
and 〈u,L−1

0 u〉 are strictly positive in Y
(u)
c (A), such that

∀u+ ∈ Y (u)
c (A) : 〈u+,L1u+〉 ≥ c1〈u+,u+〉, 〈u+,L−1

0 u+〉 ≥ c0〈u+,u+〉, (5.15)

where c1 > 0, c0 > 0.

Proof of Proposition 5.8 is given in Section 7 with the use of wave functions of the problem (2.14).

Wave functions of A with N = 1 were introduced in [BP93], where orthogonality and completeness

relations between the wave functions were derived by spectral analysis.

Combining Lemmas 5.4, 5.6, and Proposition 5.8, we formulate the following proposition.

Proposition 5.9 Assume that Assumption 2.15 is satisfied. There exists A-invariant decomposition

in X
(u)
c (R) such that

∀u ∈ X(u)
c (R) : u(x) =

∑
k

[akuRk(x) + bkuIk(x)] +
∑
m

cmum(x) + u+(x), (5.16)

where um(x) are eigenvectors for real eigenvalues γm, (uRk(x),uIk(x)) are eigenvectors for complex

eigenvalues γk = γRk + iγIk, and u+ ∈ Y (u)
c (A), such that (5.15) holds. The quadratic forms for L1

and L−1
0 are simultaneously diagonalized as follows,

〈u,L1u〉 =
∑

k

aT
k γ̂k l̂kak +

∑
m

γmlm|cm|2 + 〈u+,L1u+〉, (5.17)

〈u,L−1
0 u〉 =

∑
k

aT
k l̂kak +

∑
m

lm|cm|2 + 〈u+,L−1
0 u+〉, (5.18)

where ak = (ak, bk)T and the Jordan blocks γ̂k and l̂k are defined by (5.5).

We note that Assumption 2.15(iii)–(v) excludes both non-zero and zero eigenvalues of higher al-

gebraic multiplicity in the spectrum of A, such that Jordan blocks for multiple eigenvalues are

excluded from the decomposition (5.16). Jordan blocks for the zero eigenvalue of A with N = 1

were considered in [CP03].
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6 Proof of Theorems 7 and 8

Eigenvalues γ of the diagonalization problem (5.1) correspond to three different types of eigenvalues

λ of the linear stability problem (2.14). When γ = γm > 0, the linear problem (2.14) has two

purely imaginary eigenvalues λ which are weakly spectrally stable. When γ = γm < 0, the linear

problem (2.14) has two real eigenvalues λ, which include an unstable positive eigenvalue. When

γ = γk = γRk + iγIk is complex, the linear problem (2.14) has four complex eigenvalues λ, which

include two unstable eigenvalues with Re(λ) > 0. We trace the unstable eigenvalues λ of the

stability problem (2.14) from negative and complex eigenvalues γ of the diagonalization problem

(5.1), according to the following proposition.

Proposition 6.1 Let L be a symmetric matrix Schrödinger operator, either L1 or L−1
0 . The nega-

tive index #<0(L) of the quadratic form 〈u,Lu〉 in Hilbert space X(u)
c (R) remains invariant in two

diagonal representations (4.14) and (5.17)–(5.18).

Proof. According to diagonalization (4.14), operator L has the basis Su = E−u ∧ E0 ∧ E+
u , where

E−u is the negative subspace spanned by eigenvectors {um}Mu
m=1 such that λm = 〈um,Lum〉 < 0, E0

is the kernel of L in X(u)
c (R), and E+

u is the positive subspace of L in X(u)
c (R). The negative index

of 〈u,Lu〉 is #<0(L) = Mu.

According to diagonalization (5.17) or (5.18), operator L has also another basis Sv = Ec
v ∧ E−v ∧

E0 ∧ E+
v , where E−v is the real negative subspace spanned by eigenvectors {vm}Mv

m=1, such that

lm = 〈vm,Lvm〉 < 0, Ec
v is the complex subspace spanned by eigenvectors {vRk,vIk}Kv

k=1 such that

lRk = 〈vRk,LvRk〉, lIk = 〈vIk,LvRk〉, and E+
v is the positive subspace of L in X(u)

c (R). The Jordan

block l̂k in (5.5) has one positive and one negative eigenvalues ±lk = ±
√
l2Rk + l2Ik, such that the

negative index of 〈u,Lu〉 is #<0(Sv) = Mv + Kv. The eigenvectors vRk(x) and vIk(x) can be

orthogonalized with respect to operator L in the linear combination:

v±k = lIkvRk(x) + (±lk − lRk)vIk(x).

We assume that (Mv + Kv) > Mu and show that this is false. The case (Mv + Kv) < Mu can be

treated similarly. Consider a function gu(x) given by

gu(x) =
Kv∑
k=1

akv−k (x) +
Mv∑

m=1

cmvm(x) + u0 + u+(x). (6.1)

The eigenfunctions v−k (x) and vm(x) can be decomposed over the basis of Su:

v−k (x) =
Mu∑
j=1

αkjuj(x) + u0k(x) + u+
k (x), (6.2)

vm(x) =
Mu∑
j=1

γmjuj(x) + u0m(x) + u+
m(x). (6.3)
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Therefore, the function gu(x) is decomposed as:

gu(x) =
Mu∑
j=1

(
Kv∑
k=1

αkjak +
Mv∑

m=1

γmjcm

)
uj(x)

+

(
u0(x) +

Kv∑
k=1

aku0k(x) +
Mv∑

m=1

cmu0m(x)

)

+

(
u+(x) +

Kv∑
k=1

aku+
k (x) +

Mv∑
m=1

cmu+
m(x)

)
. (6.4)

Consider a particular case gu(x) = 0. Since the set Su is complete, then

Kv∑
k=1

αkjak +
Mv∑

m=1

γmjcm = 0, j = 1, ...,Mu, (6.5)

u0(x) +
Kv∑
k=1

aku0k(x) +
Mv∑

m=1

cmu0m(x) = 0,

u+(x) +
Kv∑
k=1

aku+
k (x) +

Mv∑
m=1

cmu+
m(x) = 0.

The linear homogeneous system (6.5) is under-determined, such that at least (Mv + Kv − Mu)

unknowns are arbitrary. Therefore, there exists a non-zero solution of (6.5) such that a non-zero

vector su(x) is defined by (6.1) with gu(x) = 0:

su(x) =
Kv∑
k=1

akv−k (x) +
Mv∑

m=1

cmvm(x) = −u0(x)− u+(x).

Therefore, the quadratic form 〈su,Lsu〉 can be bounded by two contradictory ways:

〈su,Lsu〉 = −
Kv∑
k=1

2
(
l2Rk + l2Ik

)(√
l2Rk + l2Ik + lRk

)
|ak|2 +

Mv∑
m=1

lm|cm|2 < 0,

〈su,Lsu〉 = 〈u+,Lu+〉 > 0.

The contradiction is resolved if and only if (Mv +Kv) = Mu.

Corollary 6.2 Let Ncomp be the number of complex eigenvalues in the problem (5.1). Let #<0(L0)

and #<0(L1) be the numbers of negative eigenvalues in the problems (4.1) and (4.2). Then Ncomp ≤
min(#<0(L0),#<0(L1)) and there exists (#<0(L1)−Ncomp) eigenvectors um(x) in the problem (5.1)

such that 〈um,L1um〉 < 0 and (#<0(L0)−Ncomp) eigenvectors um(x) such that 〈um,L−1
0 um〉 < 0.

Proposition 6.1 generalizes the Sylvester’s Inertia Theorem for finite-dimensional operators [G61].

Using this result, we prove Theorems 7 and 8, which define sharp bounds on the number of negative

and complex eigenvalues of the problem (5.1) from the numbers of negative eigenvalues of L1 and

L0.
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Proof of Theorem 7. It follows from Corollary 6.2 that

#<0(L1) = Ncomp + #<0(γmlm), (6.6)

#<0(L0) = Ncomp + #<0(lm). (6.7)

Taking the sum of (6.6) and (6.7), we find that

#<0(L1) + #<0(L0) = 2Ncomp + #<0(γmlm) + #<0(lm) = 2Ncomp + 2N−
imag +Nreal.

By Theorem 6, the latter identity gives the closure relation (3.1).

Proof of Theorem 8. Taking the difference of (6.6) and (6.7), we find that

|#<0(L1)−#<0(L0)| = |#<0(γmlm)−#<0(lm)| ≤ Nreal ≤ Nunst,

which is the lower bounds (3.2) and (3.3). The upper bound in (3.2) is a corollary of Theorem 7.

The bound (3.4) is given by Corollary 6.2.

We note that the constrained problems (4.1) and (4.2) have a common set of eigenfunctions if and

only if operators L1 and L0 commute. Assume that this is true. Let λ = ξm be an eigenvalue of (4.1)

and λ = ηm be an eigenvalue of (4.2), with the same eigenvector um(x). There exists an eigenvalue

γ = γm of the problem (5.1), such that

γm = ηmξm = ηm
〈um,L0um〉
〈um,um〉

= ηm
〈um,um〉

〈um,L−1
0 um〉

. (6.8)

This formula was used in [PK00] to approximate λ2 = −γm from the given solution of the constrained

problem (4.2).

7 Proof of Proposition 5.8.

We introduce wave functions of the spectral problem (2.14), similarly to analysis in [BP93] for

N = 1. Since operators L0 and L1 in (2.12) and (2.13) are diagonal differential operators with

exponentially decaying matrix potentials, there exist 2N branches of the continuous spectrum,

located symmetrically at

σcon(A) = ∪1≤n≤N{λ ∈ iR : |Im(λ)| ≥ βn}. (7.1)

Using a transformation: λ 7→ iΩ, u 7→ u, w 7→ iw, we rewrite the problem (2.14) as

L1u = Ωw, L0w = Ωu. (7.2)

We use the order

β1 ≤ β2 ≤ ... ≤ βN (7.3)
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and denote the number of end points βn to the left of the given value Ω by KΩ, KΩ ≤ N . Let

ΩE = {β1, ..., βN}. We introduce a set of continuous parameters kn ∈ R, n = 1, ..., N , where kn

parameterizes the n-th positive branch of the continuous spectrum:

Ω = βn + dnk
2
n, n = 1, ..., N, (7.4)

such that

kn = kn(Ω) =
(

Ω− βn

dn

)1/2

. (7.5)

It is clear that two n-th positive branches exist for each Ω > βn, with kn > 0 and kn < 0. We

consider the branch kn > 0 and define a set of wave functions u±n (Ω) ≡ u±n (x;k(Ω)) for Ω 6= ΩE ,

according to asymptotic values at infinity:

u±n (Ω) → ene
±iknx as x→ ±∞, kn > 0, (7.6)

where en is the n-th unit vector in CN . We define a set of scattering coefficients from asymptotic

values of u±n (k) at the other infinities:

u−n (Ω) →
KΩ∑
l=1

el

[
an,l(Ω)e−iklx + bn,l(Ω)eiklx

]
as x→ +∞,

u+
n (Ω) →

KΩ∑
l=1

el

[
An,l(Ω)eiklx +Bn,l(Ω)e−iklx

]
as x→ −∞, (7.7)

where kl > 0, l = 1, ...,KΩ, Ω 6= ΩE . It follows from the system (7.2) that the components w±
n (Ω)

have the same asymptotic representation (7.6)–(7.7) for the branch of the continuous spectrum (7.4)

with Ω > βn.

Definition 7.1 When the eigenvector of (7.2) with Ω ≥ β1 is exponentially decaying, Ω is called

an embedded eigenvalue of σemb(A). When the eigenvector of (7.2) with Ω ≥ β1 is exponentially

decaying at one infinity and bounded at the other infinity, Ω is called a semi-eigenvalue of σcon(A).

When the set of wave functions {u−n (Ω)}KΩ
n=1, KΩ ≤ N is linearly dependent from the set of wave

functions {u+
n (Ω)}KΩ

n=1, Ω is called a resonance of σcon(A).

According to Assumption 2.15(i)–(ii), we assume that the end points Ω = ΩE are not resonances

and semi-eigenvalues or embedded eigenvalues do not exist for Ω ≥ β1.

Existence of wave functions was shown in [BP93] for N = 1, where all fundamental solutions of

the linear system (7.2) were considered with Volterra integral equations, including exponentially

decreasing and increasing solutions. Exponentially decreasing terms are neglected in the asymptotic

representations (7.6)–(7.7). Existence of the wave functions u(m)
± (Ω) is addressed by the following

lemma.
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Lemma 7.2 Assume that no semi-eigenvalues and embedded eigenvalues exist for Ω ≥ β1. The

wave functions u±n (Ω), n = 1, ..., N exist and have unique asymptotic representations (7.6)–(7.7),

where coefficients an,l(Ω), bn,l(Ω) are bounded for any Ω > βn, Ω 6= ΩE.

Proof. For Ω > βn, besides a set of 2KΩ oscillatory functions, KΩ ≤ N , there exist sets of

2N − KΩ exponentially decaying and 2N − KΩ exponentially growing solutions at each infinity

x → ±∞. When Ω 6= ΩE , all functions are uniquely defined by standard theorems on solutions

of linear differential equations with exponentially decaying coefficients [CL55]. In order to define

u±n (Ω), we construct a linear combination of 2N −KΩ exponentially decaying functions at x→ ±∞
with the oscillatory function ene

±iknx and uniquely define the coefficients of the linear combination

from 2N −KΩ conditions that exponentially growing functions are removed in the limit x→ ∓∞.

If semi-eigenvalues and embedded eigenvalues do not exist for Ω > βn, the non-homogeneous linear

system for the coefficients always has a unique solution. Therefore, the wave functions u±n (Ω) are

uniquely specified by the asymptotic representations (7.6)–(7.7) for any Ω > βn, Ω 6= ΩE and the

coefficients an,l(Ω), bn,l(Ω), l = 1, ...,KΩ are bounded.

We define a ”scalar” Wronskian between two solutions u(1)(x), u(2)(x) of the system (7.2) with Ω1,

Ω2:

W [u(1),u(2)] =
N∑

n=1

dn

(
u(1)

n u(2)′
n − u(1)′

n u(2)
n + w(1)

n w(2)′
n − w(1)′

n w(2)
n

)
. (7.8)

It follows from the system (7.2) that

d

dx
W [u(1),u(2)] = (Ω1 − Ω2)

N∑
n=1

(
u(1)

n w(2)
n + w(1)

n u(2)
n

)
. (7.9)

If Ω1 = Ω2, then W [u(1),u(2)] is constant in x ∈ R. Using asymptotic values (7.6),(7.7) for

W [u−m(Ω),u+
n (Ω)] and W [ū−m(Ω),u+

n (Ω)], we derive the linear relations between the scattering co-

efficients:

An,m(Ω) =
kndn

kmdm
am,n(Ω), Bn,m(Ω) = − kndn

kmdm
b̄m,n(Ω). (7.10)

Using asymptotic values (7.6)–(7.7) for W [ū−m(Ω),u−n (Ω)] and W [ū+
m(Ω),u+

n (Ω)], we derive the

quadratic relations between the scattering coefficients:

kndnδm,n =
KΩ∑
l=1

kldl

[
ām,l(Ω)an,l(Ω)− b̄m,l(Ω)bn,l(Ω)

]
(7.11)

and
1

kndn
δm,n =

KΩ∑
l=1

1
kldl

[
āl,m(Ω)al,n(Ω)− b̄l,m(Ω)bl,n(Ω)

]
. (7.12)

We use the scalar Wronskians (7.8) to study the behavior of wave functions at the end points and

to derive the orthogonality relations between the wave functions.
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Lemma 7.3 No resonances may occur for any Ω ≥ β1, Ω 6= ΩE.

Proof. According to Definition 7.1, Ω is a resonance, if there exists a non-zero eigenvector u(x)

such that

u(x) =
KΩ∑
n=1

c−n u−n (Ω) =
KΩ∑
n=1

c+n u+
n (Ω). (7.13)

Computing W [ū,u] in the limits x→ ±∞, we have

KΩ∑
n=1

kn

(
|c−n |2 + |c+n |2

)
= 0. (7.14)

When Ω 6= ΩE , all kn > 0, such that all c±n = 0. Therefore, no eigenvector u(x) exists for Ω 6= ΩE .

Lemma 7.4 When the end point Ω = βn, n = 1, ..., N is not a resonance, the scattering coefficients

an,n(Ω), bn,n(Ω) diverges in the limit Ω → βn as follows:

lim
Ω→βn+0

knan,n(Ω) = − lim
Ω→βn+0

knbn,n(Ω) = α̂n, (7.15)

where α̂n 6= 0.

Proof. Assume for convenience that βn−1 < βn < βn+1. At Ω = βn, such that kn = 0, we have a

modified asymptotic representation for u−m(Ω) as x→ +∞:

u−m(Ω) →
KΩ∑
l=1

el

[
am,l(Ω)e−iklx + bm,l(Ω)eiklx

]
+ en

[
b̂m,n + âm,nx

]
, m = 1, ..., n, (7.16)

where n = KΩ + 1, and

b̂m,n = lim
Ω→βn+0

(bm,n(Ω) + am,n(Ω)) ,

âm,n = lim
Ω→βn+0

ikn (bm,n(Ω)− am,n(Ω)) . (7.17)

For Ω = βn − 0, no resonance may occur, such that the coefficient matrix [am,l]1≤m,l≤KΩ
is not

singular. By continuity, it remains non-singular for Ω = βn +0. Since Ω = βn is not a resonance, the

extended coefficient matrix for 1 ≤ m, l ≤ n is also non-singular, and therefore ân,n = −2iα̂n 6= 0.

We define the symplectic inner product as

J [u(1),u(2)] =
1

2πi
〈u(1),Ju(2)〉 =

1
2π

∫ ∞

−∞

N∑
n=1

(
ū(1)

n w(2)
n + w̄(1)

n u(2)
n

)
dx. (7.18)

The Dirac-function δ(k) has the properties:

δ(k) =
1
π

lim
L→∞

eikL

ik
(7.19)

and |α|δ(αk) = δ(k), α 6= 0. Using standard computations of the symplectic inner products (7.18),

we derive the orthogonality relations between wave functions u±n (Ω), n = 1, ..., N .
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Lemma 7.5 Let the set of wave functions {u±n (Ω)}N
n=1 be defined by (7.6)-(7.7) for kn > 0. The

following orthogonality relations hold:

J [u−m(Ω),u−n (Ω′)] = αm,n(Ω)δ(Ω− Ω′), (7.20)

J [u+
m(Ω),u+

n (Ω′)] = βm,n(Ω)δ(Ω− Ω′), (7.21)

J [u−m(Ω),u+
n (Ω′)] = 0. (7.22)

where

αm,n(Ω) = 4
KΩ∑
l=1

kldlām,l(Ω)an,l(Ω), βm,n(Ω) = 4
KΩ∑
l=1

1
kldl

āl,m(Ω)al,n(Ω). (7.23)

Proof. We integrate the Wronskian relation (7.9) as

J [u−m(Ω),u−n (Ω′)] =
1
2π

lim
x→∞

W [u−m(Ω),u−n (Ω′)]
Ω− Ω′

− 1
2π

lim
x→−∞

W [u−m(Ω),u−n (Ω′)]
Ω− Ω′

. (7.24)

The second term in (7.24) is computed with the use of (7.4), (7.6) and (7.19) as δm,nδ(kn−k′n). The

first term in (7.24) is computed with the use of (7.4), (7.7) and (7.19) as

KΩ∑
l=1

(
ām,lan,l + b̄m,lbn,l

)
δ(kl − k′l) +

KΩ∑
l=1

(
ām,lbn,l + b̄m,lan,l

)
δ(kl + k′l),

where we suppressed the arguments of an,l(Ω) and bn,l(Ω). Since kl > 0 and k′l > 0 in the represen-

tation (7.7), we understand that δ(kl + k′l) = 0 and

δ(kl − k′l) = 2kldlδ(Ω− Ω′).

Using (7.11), we derive (7.20). The other relations (7.21) and (7.22) are derived similarly, with the

use of (7.10) and (7.12).

Lemma 7.6 The coefficient matrices [αm,n(Ω)]1≤m,n≤KΩ
and [βm,n(Ω)]1≤m,n≤KΩ

are strictly posi-

tive for Ω 6= ΩE.

Proof. We consider a quadratic form in CKΩ :

KΩ∑
m=1

KΩ∑
n=1

x̄mαn,m(Ω)xn = 4
KΩ∑
l=1

kldl

∣∣∣∣∣
KΩ∑
n=1

an,l(Ω)xn

∣∣∣∣∣
2

≥ 0. (7.25)

Since all kl > 0, l = 1, ...,KΩ for Ω 6= ΩE , the equality would mean that the determinant of the

matrix [am,n(Ω)]1≤m,n≤KΩ
is zero, which contradicts to Lemma 7.3. Therefore, the quadratic form in

(7.25) is strictly positive for Ω 6= ΩE . Similar computations hold for the matrix [βm,n(Ω)]1≤m,n≤KΩ
.
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We define the normalized set of wave functions en(Ω), such that

en(Ω) ≡ e+
n (Ω) =

1√
kndnβn,n

u+
n (Ω), kn ≥ 0,

en(Ω) ≡ e−n (Ω) =

√
kndn

αn,n
u−n (Ω), kn ≤ 0.

It follows from (7.11)–(7.12) and (7.23) at m = n that αn,n(Ω) > 0 and βn,n(Ω) > 0. Lemma

7.4 implies that en(Ω) = O(kn) as kn → 0, such that the normalized wave functions en(Ω) are

continuous at kn = 0. It follows from Lemma 7.5 that the wave functions {en(Ω)}N
n=1 satisfy the

orthogonality relations:

J [em(Ω), en(Ω′)] = ρm,n(Ω)δ(Ω− Ω′), kn ∈ R, (7.26)

where

ρm,n(Ω) ≡ ρ+
m,n(Ω) =

βm,n√
kmkndmdnβm,mβn,n

, kn ≥ 0,

ρm,n(Ω) ≡ ρ−m,n(Ω) =

√
kmkndmdn

αm,mαn,n
αm,n, kn ≤ 0. (7.27)

It is clear from Lemma 7.6 that the matrix [ρm,n(Ω)]1≤m,n≤KΩ
is also positive for any Ω ∈ σcon(A).

We define the projection operator S : X(u)
c (R) 7→ Y

(u)
c (A), according to standard formula:

∀u ∈ X(u)
c (R),∃u+ ∈ Y (u)

c (A) : u+ = Su =
N∑

n=1

∫ ∞

−∞
ûn(Ω)en(Ω)dkn, (7.28)

where coefficients ûn(Ω) are uniquely defined by the orthogonality relations (7.26), since the matrix

[ρm,n(Ω)]1≤m,n≤KΩ
is positive definite for any Ω ∈ σcon(A). Using (7.4), we can rewrite (7.28) in

the form:

u+(x) =
N∑

n=1

∫ ∞

βn

dΩ
2kndn

(
û+

n (Ω)e+
n (Ω) + û−n (Ω)e−n (Ω)

)
, kn > 0. (7.29)

We note that the integrals (7.29) are not singular at the end points Ω = βn, since e±n (Ω) = O(kn)

as kn → 0. With this construction, we finally prove Proposition 5.8.

Proofof Proposition 5.8. Using (7.2) and (7.18), we find that

ρm,n(Ω)δ(Ω− Ω′) = J [em(Ω), en(Ω′)] =
〈em(Ω),L1en(Ω′)〉

2πΩ′
+
〈L1em(Ω), en(Ω′)〉

2πΩ
. (7.30)

Integrating by parts and using quadratic relations (7.11)–(7.12) for asymptotic representations (7.6)–

(7.7), we confirm that

〈L1em(Ω), en(Ω′)〉 = 〈em(Ω),L1en(Ω′)〉. (7.31)
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As a result, we have simultaneous orthogonality relations:

〈em(Ω),L1en(Ω′)〉 = πΩρm,n(Ω)δ(Ω− Ω′),

〈em(Ω),L−1
0 en(Ω′)〉 =

π

Ω
ρm,n(Ω)δ(Ω− Ω′). (7.32)

A simple calculation of quadratic form 〈u+,L1u+〉 for u+ ∈ Y
(u)
c (A) with the use of the spectral

representation (7.29) and the orthogonality relations (7.32) leads to formula:

〈u+,L1u+〉 =
∫ ∞

β1

(
KΩ∑

m=1

KΩ∑
n=1

ρ+
m,n(Ω)ˆ̄u+

m(Ω)û+
n (Ω) + ρ−m,n(Ω)ˆ̄u−m(Ω)û−n (Ω)
4kmkndmdn

)
πΩdΩ > 0, (7.33)

where the last equality is due to Lemma 7.6. Similar we prove that the quadratic form 〈u+,L−1
0 u+〉

is positive definite for u+ ∈ Y (u)
c (A).

8 Symmetry–breaking stability analysis

Stability analysis based on simultaneous diagonalization of two linear operators can be applied to

other Hamiltonian dynamical systems, such as Klein–Gordon and Korteweg–de Vries equations.

We show here that similar analysis is applied also to symmetry–breaking instabilities of stationary

solutions of coupled NLS equations.

Symmetry-breaking instabilities may occur when the stationary solutions in (z, x) are perturbed in

another spatial dimension, say in y [KP00]. The system of coupled NLS equations (1.1) is rewritten

in three spatial dimensions (z, x, y) as:

i
∂ψn

∂z
+ dn

(
∂2ψn

∂x2
+
∂2ψn

∂y2

)
+ fn(|ψ1|2, ..., |ψN |2)ψn = 0, n = 1, .., N. (8.1)

We assume the same conditions on fn and dn, as below (1.1). Linearization of the stationary

solutions (2.1) is defined by the expansion,

ψn(z, x, y) = [Φn(x) + Un(z, x, y) + iWn(z, x, y)] eiβnz, (8.2)

where (Un,Wn)T ∈ R2 are perturbation functions. Separating the variables (z, x, y) as U =

u(x) eλz+ipy, W = w(x) eλz+ipy, we arrive to the linear eigenvalue problem,(
L1 + p2D

)
u = −λw,

(
L0 + p2D

)
w = λu, (8.3)

where (u,w)T ∈ R2N , p ∈ R, and D is a diagonal matrix of (d1, ..., dN ). Eigenvalues λ and

eigenvectors (u,w)T of the linearized problem (8.3) depend on parameter p.

Lemma 8.1 There exist exactly n(L1,0) negative eigenvalues λ of the problem

L1,0u = λDu, u ∈ L2(R), λ < 0. (8.4)
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Proof. Since D is positive definite, all eigenvalues λ in (8.4) are real. Proposition 6.1 suggests that

the negative index of quadratic forms 〈u,L1,0u〉 in Hilbert space L2(R) is invariant in two diagonal

representations, one with respect to 〈un,un〉 and the other one with respect to 〈un,Dun〉 > 0.

We define negative eigenvalues λ of the problem (8.4) for L1 as λ = −{Λ2
1,n}

n(L1)
n=1 and for L0 as

λ = −{Λ2
0,n}

n(L0)
n=1 . We split the domain p2 ∈ R+ into sub-domains:

Dn1,n0 = {p2 ∈ R+ : Λ2
1,n1

< p2 < Λ2
1,(n1+1), Λ2

0,n0
< p2 < Λ2

0,(n0+1)}, (8.5)

where 0 ≤ n1 ≤ n(L1), 0 ≤ n0 ≤ n(L0), such that Λ2
1,0 = Λ2

0,0 ≡ 0, and Λ2
1,(n(L1)+1) = Λ2

0,(n(L0)+1) ≡
∞.

Lemma 8.2 In the domain Dn1,n0, there are exactly (n(L1)−n1) negative eigenvalues of the problem(
L1 + p2D

)
u = λu, u ∈ L2(R), λ < 0, (8.6)

and exactly (n(L0)− n0) negative eigenvalues of the problem,(
L0 + p2D

)
u = λu, u ∈ L2(R), λ < 0. (8.7)

Proof. The result follows from continuity of eigenvalues λ of the uncoupled problems (8.6) and

(8.7) with respect to parameter p2 in the domain 0 ≤ p2 <∞. Each negative eigenvalue λ = λ(p2)

of operator
(
L1,0 + p2D

)
is an increasing function of p2 if D is positive definite, since

λ′(p2) =
〈u,u〉
〈u,Du〉

> 0. (8.8)

When p2 increases, eigenvalues λ(p2) pass through the zero value at the boundaries between domains

Dn1,n0 in (8.5), and the number of negative eigenvalues of (8.6)–(8.7) reduces according to the

multiplicity of eigenvalues λ = −Λ2
1,n1

and λ = −Λ2
0,n0

in (8.4).

Proposition 8.3 Assume that Assumption 2.15 is satisfied for the problem (8.3) in the domain

Dn1,n0. The linearized problem (8.3) has Nunst = Nreal + 2Ncomp unstable eigenvalues λ = λ(p) with

Re(λ) > 0, such that

(i) |n(L1)− n(L0)− n1 + n0| ≤ Nunst ≤ (n(L1) + n(L0)− n1 − n0), (8.9)

(ii) Nreal ≥ |n(L1)− n(L0)− n1 + n0|, (8.10)

(iii) Ncomp ≤ min (n(L0)− n0, n(L1)− n1) . (8.11)

Proof. The linearization problem (8.3) can be rewritten in the form of a diagonalization problem,(
L1 + p2D

)
u = γ

(
L0 + p2D

)−1 u, u ∈ L2(R), (8.12)

where γ = −λ2. If p2 > 0 and p2 6= Λ2
0,n, n = 1, ..., n(L0), the operator (L0 + p2D) is invertible in

L2(R). Proposition 6.1 applies with #<0(L1 + p2D) = n(L1)−n1 and #<0(L0 + p2D) = n(L0)−n0

in the domain Dn1,n0 . Proposition 8.3 is then equivalent to Theorem 8.
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Proposition 8.4 Assume that Assumption 2.15 is satisfied for the problem (2.14). Let Nunst be the

number of unstable eigenvalues in the problem (2.14). There exists p2
∗ > 0 such that the linearized

problem (8.3) has exactly N̂unst unstable eigenvalues in the domain 0 < p2 < p2
∗, where N̂unst =

Nunst + p(U). The new p(U) unstable eigenvalues λ are all real and positive.

Proof. Lemma 2.17 suggests that the linearized problem (2.14) has N +1 double zero eigenvalues

in L2(R). The symmetry-breaking perturbation with p2 > 0 split these double eigenvalues into pairs

of real or imaginary eigenvalues λ(p) of the linearized problem (8.3). We show that p(U) double

eigenvalues split into pairs of real eigenvalues λ, by perturbation series arguments [K76]. We expand

solutions of (8.3) into power series of p as follows,

u = pλ1

N∑
n=1

cn
∂Φ
∂βn

+ O(p3),

w =
N∑

n=1

cnΦn(x)en + p2w2(x) + O(p4), (8.13)

where λ = pλ1 + O(p3). The function w2(x) satisfies the non-homogeneous linear problem,

L0w2 = λ2
1

N∑
n=1

cn
∂Φ
∂βn

−
N∑

n=1

cndnΦn(x)en. (8.14)

Using the Fredholm Alternative Theorem, we find that c = (c1, ..., cN )T satisfies the generalized

eigenvalue problem,

λ2
1Uc = 2DQsc, (8.15)

where Qs is a diagonal matrix of (Q1s, ..., Qns)T and U is the Hessian matrix (2.7). Since DQs

is positive-definite, Sylvester’s Inertia Theorem suggests that the linear system (8.15) has exactly

p(U) positive eigenvalues and n(U) negative eigenvalues λ2
1. Therefore, positive eigenvalues of U are

related to new unstable (real and positive) eigenvalues λ = λ(p) in the linearization problem (8.3)

for sufficiently small values of p2 > 0, in addition to Nunst unstable eigenvalues λ(p) existing in the

limit p2 → 0 with Re(λ) > 0.

Proposition 8.4 agrees with Proposition 8.3 for n1 = 0 and n0 = 0. We also notice that the (N+1)-th

double zero eigenvalue with the eigenvector (Φ′(x),0N )T splits into a pair of imaginary eigenvalues

for p2 > 0, due to Galileo invariance (1.7), since the translational symmetry (1.6) does not change

the index p(UH).

With a limited use, the same method is applied to the hyperbolic NLS equations, such as

iψz + ψxx − ψyy + |ψ|2ψ = 0. (8.16)

The stationary solutions are ψ(z, x) =
√

2β sech(
√
βx) eiβz, where β > 0. It is easy to check that

n(L1) = 1, n(L0) = 0, and z(L1) = z(L0) = 1. In the domain 0 < p2 < β, zero eigenvalues of
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L1 and L0 become negative eigenvalues in the problems (8.6) and (8.7). Proposition 8.3 applies

with n1 = −1 and n0 = −1 and suggests that there are 1 ≤ Nunst ≤ 3 unstable eigenvalues in

the linearized problem (8.3) for 0 < p2 < β. Indeed, it was shown in [P01] that there is one real

positive eigenvalue λ(p) in the domain 0 < p2 < p2
thr, where p2

thr < β, and three unstable (Nreal = 1,

2Ncomp = 2) eigenvalues λ(p) for p2
thr < p2 < β. The stability analysis breaks in the domain p2 ≥ β,

where the negative space of operators (L1 + p2D) and (L0 + p2D) becomes infinite-dimensional.
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