
RAPID COMMUNICATIONS

PHYSICAL REVIEW E JANUARY 1998VOLUME 57, NUMBER 1
Spatial properties of velocity structure functions in turbulent wake flows
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In this paper we present experimental evidence that the scaling laws for the velocity structure functions
Sn(r )5^@V(x1r )2V(x)#n& n52,4,6,8 hold in various parts of the flow domain. The exponents that charac-
terize the scaling are, however, a function of the position in the wake that is the local strength and ubiquity of
coherent structures. This variation is shown to be systematic and considerably exceeds the inaccuracy involved
in the determination of the exponents. This is an objective indication of the influence that the organized flow
structures and inhomogeneity may have on intermittency. In the analysis we invoke the concept of the extended
self-similarity ~ESS!. @S1063-651X~98!50101-8#

PACS number~s!: 47.27.Jv, 47.27.Nz, 47.27.Vf
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One of the most intriguing features of fully develope
turbulent flows is the phenomenon of intermittency@1#. It
can be defined as significant departures from the mean
hibited by certain flow quantities@2#. In the analysis of in-
termittent aspects of turbulent flows attention is most of
focused on the scaling properties of structure functio
Sn(r ). The scalingSn;r zn is usually examined, wherezn is
the scaling exponent. Its deviation from the linear K41 p
diction @3# may be regarded as a measure of the intermitte
effects.

In recent years there appeared a lot of data, both exp
mental, e.g., Ref.@4#, and numerical, e.g., Ref.@5#, giving
credit to the anomalous scaling of the structure functio
Besides, a number of theoretical models emerged, eac
them attempting to predict the numerical values of the in
mittency corrections. Recent works include Refs.@6–8#. All
of them refer to the 3D homogeneous isotropic case
assume that the scaling exponents are uniquely defined
universal. In the turbulence research it has been customa
test the universality of the hypotheses against the variat
of the Taylor scale Reynolds number Rel ~e.g., Ref.@9#!. On
the other hand, in the present work we explore their dep
dence on the topological properties of the flow. Every lab
ratory experiment is contaminated by coherent structure
is thus of great theoretical and practical interest to study h
their presence affects the actual observed statistics of in
mittency. An understanding of these effects may help to
interpret the results obtained so far. Moreover, this can
regarded as a step towards reconciliation of the two ap
ently independent trends in turbulence research, nam
analysis of the statistics and the study of coherent structu
An interesting attempt at such a combined analysis of tur
lence of passive scalars was recently launched in Ref.@12#.

Turbulent wake flows are characterized by a whole pa
ply of coherent structures@13# with varying degrees of inten
sity and regularity. Basic characteristics of these flows
pear to be well documented in the literature@13–16#.
Furthermore, wake flows can be relatively easily obtained
571063-651X/98/57~1!/9~4!/$15.00
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a laboratory. Therefore, this flow configuration appears p
ticularly well suited to the analysis of inhomogeneous turb
lence. Our work is the first systematic study of the scal
exponents in inhomogeneous turbulence.

In this work we show experimental evidence that the sc
ing laws of the structure functions exist in the various pa
of the flow domain, although the values of the scaling exp
nentszn in fact may be different. Thezn exponents presente
below were obtained from hot-wire measurements perform
in turbulent wake flows in two different experimental facil
ties ~henceforth denoted as experimentsE1 and E2!. The
parameters of the wind tunnel used inE1 are as follows:
dimensions of the test section 20320 cm, velocity range
0–12 m/sec, residual turbulence level 1.0%. In the case
the experimentE2 the respective parameters are: dimensio
of the test section 30330 cm, velocity range 0–50 m/sec
residual turbulence level 0.1%. In both cases, the thickn
of the hot wire was 5mm and its length 1.2 mm. The sam
pling frequency was 50 kHz, which gave the maximum re
lution of a few Kolmogorov lengthsh. The wake flow was
generated by a circular cylinder with the diameterD equal to
1 cm. Data was recorded at a number of control points pla
downstream from the obstacle on the axis of the flow~ex-
periment E1! and both on and off the axis (E2). In the
experimentE1 the downstream distances from the obsta
were 3, 5, 10, 30, 40, 60, and 80D ’s. The overall number of
control points in the experimentE2 exceeded 100. Thei
positions are shown in Fig. 1.

Each time series in the experimentE1 consisted of ap-
proximately 105 samples. In the experimentE2 the time se-

FIG. 1. Control points in the wake in the experimentE2.
R9 © 1998 The American Physical Society
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FIG. 2. Spatial evolution of turbulence inten
sity I turb ~top left!, correlation lengthL ~top
right!, dissipative scalesh ~bottom left! and the
Taylor-scale-based Reynolds number Rel ~bot-
tom right!. The mesh is interpolated using th
nonuniformly spaced control points.
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ries for the points on the axis were longer, around 53105

samples each, and shorter for control points lying off the a
~between 103 and 104 each!. Therefore convergence o
higher ~up to the 8th! order statistical moments of structu
functions was assured for the former and only lower~up to
the 4th! order for the latter locations@17#. For the sake of
verification, at a few off-axis control points also longer tim
series (53105) were acquired. Comparing to the short
data, they showed no difference as concerns low-order
tistics and other relevant flow quantities. In the followin
analysis the data from the experimentE2 will be mainly
used. When the data fromE1 appears, it will be explicitly
stated. TheexternalReynolds number, i.e., based on the u
perturbed flow velocityU` and the obstacle diameterD, was
around 6000 for the caseE1 and 12 000 for the caseE2.
First we proceed with some standard diagnostics of the fl
conditions. In Figs. 2~a!–2~d! we present the spatial behavio
of some typical flow parameters: turbulence intensityI turb
(I turb5 (urms /umean!3100%!, correlation lengthL ~see be-
low for definition!, Kolmogorov dissipation lengthh and
Taylor scale based Reynolds number Rel5 (urmsl/n) ~where
l25 urms

2 /^(du/dx)2& is the Taylor microscale!, respectively.
Both L and h are nondimensionalized with respect to t
cylinder diameterD. In all these figures the data in the no
uniformly spaced control points~Fig. 1! was interpolated in
order to obtain a regular mesh. The plots are stretched in
spanwise direction. It is visible that the turbulence intens
I turb and the Taylor scale based Reynolds number Rel have
well defined maxima in the near vicinity of the obstacle a
decay in the downstream and the spanwise directions. C
versely, bothL and h remain approximately constant ove
the flow domain and increase only when the free stream
approached.

The dependence of the structure functionsSn(r )
5^u@V(x1r )2V(x)#un& with n52,3,4,6,8 on the separatio
distancer normalized with respect to the Kolmogorov leng
h is shown in Figs. 3~a! and 3~b! for the downstream dis
tancesx52D andx580D along the axis, respectively.
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The structure functionsSn are recovered from the time
series by means of the standard Taylor hypothesis@18#. The
scaling exponents are calculated using the technique of
tended self-similarity~ESS!, i.e., the structure functionSn is
plotted againstS3(r )5^u@V(x1r )2V(x)#u3&. The feasibil-
ity of this substitution was first established in Ref.@19# and is
now commonly accepted. As was shown in Ref.@20#, the
specific form of the Taylor hypothesis does not affect t
ESS scaling properties of the structure functions. Contrar
what was said in Ref.@10#, ESS was also found to hold in th
presence of shear, corresponding to the near wake regio

FIG. 3. Structure functionsSn(r ), n52,3,4,6,8 vsr /h at dis-
tances~a! 2D and~b! 80D downstream from the obstacle along th
axis; the vertical dashed lines denote the limits of the ESS ran
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our case. In support of this statement, in Figs. 4~a! and 4~b!
we present the ESS scaling of the structure functions of o
n52,4,6,8 at the distances 2D and 80D downstream from
the obstacle along the axis, respectively. It can be seen
in both cases the scaling is of comparable quality, altho
in the near wake region the ESS scaling range is slig
shorter, i.e., fewer pairs$Sn(r );S3(r )% can be taken into ac
count in the evaluation of the scaling exponent. In Ref.@21#
we also analyzed the variation of the characteristics of
ESS scaling range over the flow domain.

It was found in Ref.@22# that changes of the limits of th
ESS range can influence the values of the scaling expon
It was therefore necessary to introduce uniform criteria
the determination of the lower and upper bound of the s
ing range. The lower limit was taken equal to a certain m
tiple of the Kolmogorov lengthh, usually around~20–25!h.
This is in accordance with the values agreed upon in R
@23#. The upper limit corresponds to the lengths at wh
scaling ceases to be self-similar and is given in terms of
integral scaleL defined as@24#

L5
1

bLL~0!
E

0

`

bLL~r !dr, ~1!

wherebLL(r ) is the longitudinal correlation function for ve
locity:

bLL~r !5^V~x1r !V~x!&. ~2!

FIG. 4. ESS scaling of the structure functionsSn(r ), n
52,4,6,8 at the distance:~a! 2D and~b! 80D downstream from the
obstacle along the axis.
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We assumed that the ESS range comprises scales u
around 0.5L. With the use of these criteria, it was possible
easily control the accuracy of the fit. As a result, the obtain
error bars were small, considerably smaller than those
ported in Ref.@19#. This is crucial as it shows that the dis
covered variations of thezn exponents are generic and si
nificantly exceed the uncertainties of their determination.

FIG. 5. Scaling exponentszn , n52,4,6,8 on the axis of the
wake as a function of the downstream distance from the obsta
Circles correspond to the experimentE2, squares to the experimen
E1, and diamonds to Ref.@19#.

FIG. 6. 3D surface plots of the scaling exponentsz2 ~a! andz4

~b! as a function of the location in the wake. The solid symb
represents values actually obtained in the experimentE2. The sur-
face meshes were computed using linear interpolation. Compa
to the actual proportions the plots are stretched in the span
direction. The cylindrical obstacle is also shown.
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In Fig. 5 we present the exponentszn , n52,4,6,8 as a
function of the downstream distance from the obstacle. T
correspond to the control points on the axis of the wake. T
plots for n52,4,6 also include exponents obtained in t
experimentE1 and reported in Ref.@19#.

The consecutive Figs. 6~a! and 6~b! present the surface
plots of the scaling exponentsz2 and z4 , i.e., their depen-
dence on both the downstream distance from the obst
and the spanwise separation from the axis of the wake
these figures the solid symbols represent the values act
obtained in the experiment~on nonuniform grid–cf. Fig. 1!,
while the surface mesh was computed using linear interp
tion. For the sake of clarity in the two figures different view
ing perspectives have been taken and, comparing to the
tual proportions, the plots are stretched in the spanw
direction. The figures also show the locations of the cylind
cal obstacle.

The main result of the above graphs is that the value
the scaling exponents significantly depend on the locatio
the flow field where they are computed. This depende
seems to be systematic and exhibits well-defined trends.
intermittency correction, defined as the departure from
linear 1941 Kolmogorov~K41! prediction@1#, is more pro-
nounced in the near wake, especially off the axis, wher
varies rapidly. On the other hand, in the far wake region
scaling exponents approach an asymptotic value that app
to be slightly more intermittent then the K41 prediction.
fact, it is close to the She and Leveque model@6#. The de-
pendence of the scaling exponentszn on the position in the
flow domain indicates the role that the coherent structu
and inhomogeneity play with regard to the intermittency c
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rection. It shows the intrinsic relation between the sma
scale statistics and the organized large-scale motion as
as flow topology. It must be added that we obtained sim
results in a numerical simulation of the 2D turbulent wa
flow @21# ~where they were expressed in terms of therelative
scaling exponents@27#!. Influence of organized structures o
the inertial range power laws was also found in the exp
ments reported in Ref.@26#. Actually, the exponents reporte
in Ref. @19# were also obtained in a wake,x520D down-
stream from the cylinder. They agree remarkably well w
our results computed at that particular location~cf. Fig. 5!.
This puts these, as well as other commonly accepted res
in a new perspective. This, in particular, concerns exp
ments performed in closed flows where coherent structu
are more concentrated and the scaling exponents are in
found to be more intermittent. In fact, these results are no
contradiction with certain theoretical models predicting t
numerical values of thezn exponents. For example, the Sh
and Leveque model@6# includes one adjustable paramet
that is the codimension of the most intermittent structu
present in the flow. The nonuniformity of thezn exponents
may thus imply that the character of these structures m
continually vary in the flow domain.
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