RAPID COMMUNICATIONS

PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998

Spatial properties of velocity structure functions in turbulent wake flows

E. Gaudin® B. Protas-? S. Goujon-Durand;® J. Wojciechowsk? and J. E. Wesfrefd
ILaboratoire de Physique et Manique des Milieux Herogenes, Centre National de Recherche Scientifique,
; Unite de Recherche Assoei®57,
Ecole Supdeure de Physique et Chimie Industrielles (ESPCI), 10 rue Vauquelin, 75231 Paris Cedex 05, France
’Department of Aerodynamics, Institute of Aeronautics and Applied Mechanics,
Warsaw University of Technology, Nowowiejska 24, 00-665 Warsaw, Poland
SFacultede Sciences et Technologie, Universdaris XII, Val de Marne 61, Avenue du’ G&al de Gaulle,
94010 Creteil Cedex, France
(Received 5 February 1997

In this paper we present experimental evidence that the scaling laws for the velocity structure functions
Sa(r) ={[V(x+r)—=V(x)]" n=2,4,6,8 hold in various parts of the flow domain. The exponents that charac-
terize the scaling are, however, a function of the position in the wake that is the local strength and ubiquity of
coherent structures. This variation is shown to be systematic and considerably exceeds the inaccuracy involved
in the determination of the exponents. This is an objective indication of the influence that the organized flow
structures and inhomogeneity may have on intermittency. In the analysis we invoke the concept of the extended
self-similarity (ESS. [S1063-651X98)50101-§

PACS numbes): 47.27.Jv, 47.27.Nz, 47.27.Vf

One of the most intriguing features of fully developed a laboratory. Therefore, this flow configuration appears par-
turbulent flows is the phenomenon of intermitteridy. It ticularly well suited to the analysis of inhomogeneous turbu-
can be defined as significant departures from the mean ejence. Our work is the first systematic study of the scaling
hibited by certain flow quantitief2]. In the analysis of in- exponents in inhomogeneous turbulence.
termittent aspects of turbulent flows attention is most often In this work we show experimental evidence that the scal-
focused on the scaling properties of structure functiondng laws of the structure functions exist in the various parts
S,(r). The scalingS,~rn is usually examined, wherg, is of the flow domain, although the values of the scaling expo-
the scaling exponent. Its deviation from the linear K41 pre-hents{, in fact may be different. Thé, exponents presented
diction[3] may be regarded as a measure of the intermittencipelow were obtained from hot-wire measurements performed
effects. in turbulent wake flows in two different experimental facili-

In recent years there appeared a lot of data, both experfies (henceforth denoted as experimeits and E2). The
mental, e.g., Ref[4], and numerical, e.g., Ref5], giving  parameters of the wind tunnel used &l are as follows:
credit to the anomalous scaling of the structure functionsdimensions of the test section 2@0 cm, velocity range
Besides, a number of theoretical models emerged, each 8-12 m/sec, residual turbulence level 1.0%. In the case of
them attempting to predict the numerical values of the interthe experimenE2 the respective parameters are: dimensions
mittency corrections. Recent works include Ré6s-8]. Al of the test section 3030 cm, velocity range 0-50 m/sec,
of them refer to the 3D homogeneous isotropic case angesidual turbulence level 0.1%. In both cases, the thickness
assume that the scaling exponents are uniquely defined amd the hot wire was Sum and its length 1.2 mm. The sam-
universal. In the turbulence research it has been customary fging frequency was 50 kHz, which gave the maximum reso-
test the universality of the hypotheses against the variationkition of a few Kolmogorov lengths;. The wake flow was
of the Taylor scale Reynolds number,Re.g., Ref[9]). On  generated by a circular cylinder with the diamebeequal to
the other hand, in the present work we explore their depenl cm. Data was recorded at a number of control points placed
dence on the topological properties of the flow. Every labo-downstream from the obstacle on the axis of the fiew-
ratory experiment is contaminated by coherent structures. perimentE1l) and both on and off the axisEQ). In the
is thus of great theoretical and practical interest to study hovexperimentE1l the downstream distances from the obstacle
their presence affects the actual observed statistics of intewere 3, 5, 10, 30, 40, 60, and 80s. The overall number of
mittency. An understanding of these effects may help to recontrol points in the experimeriE2 exceeded 100. Their
interpret the results obtained so far. Moreover, this can bgositions are shown in Fig. 1.
regarded as a step towards reconciliation of the two appar- Each time series in the experimeBi consisted of ap-
ently independent trends in turbulence research, namelgroximately 16 samples. In the experimeB the time se-
analysis of the statistics and the study of coherent structures,

An interesting attempt at such a combined analysis of turbu-= v
lence of passive scalars was recently launched in [Rél. % {
Turbulent wake flows are characterized by a whole pano-
ply of coherent structurgd 3] with varying degrees of inten- 2
sity and regularity. Basic characteristics of these flows ap- s - - 55 s o *d

pear to be well documented in the literatuf&3-18.
Furthermore, wake flows can be relatively easily obtained in FIG. 1. Control points in the wake in the experimé&®.
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FIG. 2. Spatial evolution of turbulence inten-
sity lyp (top leff), correlation lengthA (top
right), dissipative scaleg (bottom lefy and the
Taylor-scale-based Reynolds number, Rbot-
tom righy. The mesh is interpolated using the
nonuniformly spaced control points.

ries for the points on the axis were longer, around 1%° The structure functions, are recovered from the time
samples each, and shorter for control points lying off the axiseries by means of the standard Taylor hypothgs8é The
(between 18 and 10 each. Therefore convergence of scaling exponents are calculated using the technique of ex-
higher (up to the 8th order statistical moments of structure tended self-similaritESS, i.e., the structure functio8, is
functions was assured for the former and only lowg to  plotted againsS;(r) ={(|[V(x+r)—V(x)]|®). The feasibil-

the 4th order for the latter locationgl7]. For the sake of ity of this substitution was first established in Reif9] and is
verification, at a few off-axis control points also longer time now commonly accepted. As was shown in RegX0], the
series (5<10°) were acquired. Comparing to the shorter specific form of the Taylor hypothesis does not affect the
data, they showed no difference as concerns low-order st&SS scaling properties of the structure functions. Contrary to
tistics and other relevant flow quantities. In the following what was said in Ref10], ESS was also found to hold in the
analysis the data from the experimeB2 will be mainly  presence of shear, corresponding to the near wake region in
used. When the data frofa1 appears, it will be explicitly

stated. TheexternalReynolds number, i.e., based on the un- e —sm '
perturbed flow velocityJ,, and the obstacle diamet®r, was P
around 6000 for the casel and 12 000 for the casg2. L e

First we proceed with some standard diagnostics of the flow o
conditions. In Figs. @)—2(d) we present the spatial behavior g

of some typical flow parameters: turbulence intendity, i

(I b= (urms /umeajx 100%, correlation lengthA (see be- 10

low for definition), Kolmogorov dissipation length; and
Taylor scale based Reynolds numbeg Réu,,\/v) (where

)\2_ 2 2\ - . . ! 2D (a)
= Ui, d((du/dx)?) is the Taylor microsca)erespectively. 102 — - e
Both A and » are nondimensionalized with respect to the iy

cylinder diameteD. In all these figures the data in the non- 10° ] ‘

uniformly spaced control pointdig. 1) was interpolated in =S ‘

order to obtain a regular mesh. The plots are stretched in the Sl g

spanwise direction. It is visible that the turbulence intensity Wl e s |

l b @nd the Taylor scale based Reynolds numbey fieve 2 :

well defined maxima in the near vicinity of the obstacle and Z0

decay in the downstream and the spanwise directions. Con-

versely, bothA and » remain approximately constant over

the flow domain and increase only when the free stream is 10

approached. , ) |
The dependence of the structure functiorg(r) 10

=(|[V(x+1)=V(x)]|") with n=2,3,4,6,8 on the separation

distancer normalized with respect to the Kolmogorov length  FIG. 3. Structure functions,(r), n=2,3,4,6,8 vsr/ 7 at dis-

7 is shown in Figs. @) and 3b) for the downstream dis- tances(a) 2D and(b) 80D downstream from the obstacle along the

tancesx=2D andx=80D along the axis, respectively. axis; the vertical dashed lines denote the limits of the ESS range.

1/n



RAPID COMMUNICATIONS

57 SPATIAL PROPERTIES OF VELOCITY STRUCTUR. .. R11
10* sl — 22
O — §5,v8.8; . . ST L.t . 12!
0| 0 — Sivs.ss L S T 120
& —— S¢vs. 83 G126 - o’ + Jioo
O —— Sgvs.S; 124 + - 118
10° 1.22 —:’ Jo 117
} } } } t t } } 1.9
w= 101 0.76 re T o m . . 118
074 o T ae* . 17
10° G0k, . T e
o7t "3, : T q1s
10" R 1R I
x=2D (a) 0 0 40 _ e 800 20 4 _ e s
107 x/D x/D
10" 10° 10' . _
S; FIG. 5. Scaling exponents,, n=2,4,6,8 on the axis of the
, wake as a function of the downstream distance from the obstacle.
10 Circles correspond to the experiméf2, squares to the experiment
Z _ E1, and diamonds to Ref19].
1| & —
Wlo — We assumed that the ESS range comprises scales up to

around 0.3.. With the use of these criteria, it was possible to
easily control the accuracy of the fit. As a result, the obtained

10
2 error bars were small, considerably smaller than those re-
ported in Ref[19]. This is crucial as it shows that the dis-
10" covered variations of thé&, exponents are generic and sig-
x=80D (b) nificantly exceed the uncertainties of their determination.
-2
100 10°

S;

FIG. 4. ESS scaling of the structure functiof&(r), n
=2,4,6,8 at the distanc€a) 2D and(b) 80D downstream from the
obstacle along the axis.

our case. In support of this statement, in Fig®) 4nd 4b)

we present the ESS scaling of the structure functions of order
n=2,4,6,8 at the distancesD2and 8@ downstream from

the obstacle along the axis, respectively. It can be seen that
in both cases the scaling is of comparable quality, although
in the near wake region the ESS scaling range is slightly
shorter, i.e., fewer pair§S,(r);S;(r)} can be taken into ac-
count in the evaluation of the scaling exponent. In R21]

we also analyzed the variation of the characteristics of the
ESS scaling range over the flow domain.

It was found in Ref[22] that changes of the limits of the

ESS range can influence the values of the scaling exponents.
It was therefore necessary to introduce uniform criteria for
the determination of the lower and upper bound of the scal-
ing range. The lower limit was taken equal to a certain mul-
tiple of the Kolmogorov lengthy, usually around20-25 #.
This is in accordance with the values agreed upon in Ref.
[23]. The upper limit corresponds to the lengths at which
scaling ceases to be self-similar and is given in terms of the
integral scale\ defined ag24|

A= 1 me d 1
“ b0 Jo L (rdr, (1)

FIG. 6. 3D surface plots of the scaling exponefiga) and{,
(b) as a function of the location in the wake. The solid symbol
represents values actually obtained in the experirB&ntThe sur-
face meshes were computed using linear interpolation. Comparing
to the actual proportions the plots are stretched in the spanwise
b (r)=(V(X+r)V(x)). (2)  direction. The cylindrical obstacle is also shown.

whereb, (r) is the longitudinal correlation function for ve-
locity:
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In Fig. 5 we present the exponenfs, n=2,4,6,8 as a rection. It shows the intrinsic relation between the small-
function of the downstream distance from the obstacle. Thegcale statistics and the organized large-scale motion as well
correspond to the control points on the axis of the wake. Th@s flow topology. It must be added that we obtained similar
plots for n=2,4,6 also include exponents obtained in theresults in a numerical simulation of the 2D turbulent wake
experimentE1 and reported in Ref19]. row_[21] (where they were expressed in terms of télative

The consecutive Figs.(§ and &b) present the surface scaling exponentg27]). Influence of organized structures on
plots of the scaling exponents, and ¢,, i.e., their depen- the inertial range power laws was also found in the experi-
dence on both the downstream distance from the obstacf8€Nts reported in Ref26]. Actually, the exponents reported
and the spanwise separation from the axis of the wake. IIfl R€f-[19] were also obtained in a wake=20D down-

these figures the solid symbols represent the values actual ream from the cylinder. They agree remarkably_well with
obtained in the experimerfon nonuniform grid—cf. Fig. & ur results computed at that particular locati@h Fig. 5).

: JL This puts these, as well as other commonly accepted results,
while the surface mesh was computed using linear interpol

, o . ) ! n a new perspective. This, in particular, concerns experi-
tion. For the sake of clarity in the two figures different view- oo nerformed in closed flows where coherent structures

X ) 8&Ffe more concentrated and the scaling exponents are indeed
tual proportions, the plots are stretched in the spanwisg, ng 1o be more intermittent. In fact, these results are not in
direction. The figures also show the locations of the cylindri-contradiction with certain theoretical models predicting the
cal obstacle. , numerical values of thé, exponents. For example, the She
The main result of the above graphs is that the values 04 | eveque moddl6] includes one adjustable parameter
the scaling exponents significantly depend on the location ifha¢ s the codimension of the most intermittent structures

seems to be systeme;tic and_exhibits well-defined trends. Th%ay thus imply that the character of these structures may
intermittency correction, defined as the departure from th%ontinually vary in the flow domain.

linear 1941 Kolmogoro\K41) prediction[1], is more pro-

nounced in the near wake, especially off the axis, where it We would like to thank J.-L. Aider, S. Alfaro, S. Cilib-
varies rapidly. On the other hand, in the far wake region theerto, F. Favray, L. Gomes, Ph. Petitjeans, and G. Stolovitzky
scaling exponents approach an asymptotic value that appedts assistance and enlightening discussions. Kind
to be slightly more intermittent then the K41 prediction. In acknowledgments are also due to Laboratoire Inter-
fact, it is close to the She and Leveque moil The de-  Unversitaire des Systees Atmospheques (URA 1404
pendence of the scaling exponedtson the position in the CNRS at the University Paris Xl for help with the experi-
flow domain indicates the role that the coherent structuresnentsgEl. B. P. is also grateful to the French Embassy in
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