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Scaling properties of two-dimensional turbulence in wakes behind bluff bodies
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This paper contains an analysis of the scaling properties of two-dimengRibaturbulence obtained by
means of numerical simulation using thertex blobmethod. The flow under consideration is the turbulent
wake behind a bluff body with a developed enstrophy cascade and reduced inverse energy cascade. The
concept ofextended self-similarityESS and the associateglative scaling exponentg,, .=,/ are in-
voked within the framework of 2D turbulence. The scaling exponents in the enstrophy range are found to
systematically vary with the downstream distance from the obstacle, thus revealing their nonuniqueness. In
terms of therelative exponents, the present results quantitatively agree with recent laboratory experiments of
Gaudinet al. [PMMH-ESPCI Report No. A 96/57, 199@inpublishedl]. Error bars and the accuracy of the
ESS scaling are carefully checkd®1063-651X97)06303-4

PACS numbgs): 47.27.dv, 47.27.Nz, 47.27.Vf

I. INTRODUCTION exponents,, from the K41 prediction might be regarded as a
measure of the intermittency effedts].

In recent years, new interest has emerged concerning the New possibilities arose when the concepegfended self-
scaling properties of turbulent flows, e.§1,2]. They are similarity (ESS was developed7]. It states that when one
reflected in the scale invariance of the Navier-Stokes equanoment is plotted against another, then the scaling is much
tions, both in two dimensions and three dimensif8ls Re-  more pronounced
search is mainly focused on the deviations from the cel-
ebrated K41 theorf4]. Usually, they become apparent in the
anomalous behavior of the velocity structure functions which
are defined in the following way:

&
I

In other words, the ratio of two scaling exponefitence-
Sp(N=({[V(x+r)=V(x)]"), (1)  forth, denoted by an overbastays constant for a wider
range of scales than each of them does when taken sepa-
wherer denotes the separation distansgjs the velocity rately. As was shown ifi8], the ESS scaling comprises not
component parallel to, and( ) represents the ensemble av- only theinertial range but also reaches as far down as a few
erage. In this respect, in the three-dimensidB8)) case, the Kolmogorov scales;. Consequently, the scaling exponents
K41 theory predicts that the scaling exponent is a Iinealgm’n can be computed with much higher accuracy even at
function of the order of the structure function relatively moderate Reynolds numbers. Another important
feature of ESS is that it provides information in terms of the
7) relative scaling exponentg, ,, which are more universal in
that they remain valid also in the 2D caf®]. Thus this
concept provides a uniform framework for the investigation
On the other hand, in the 2D case, owing to the conservatioof anomalous scaling properties of both 2D and 3D flows.
of both energy and enstrophy, there are two distinct scalingrhe deviation of the exponerdt,= {5, from the linear be-
regimeg[5]: inverse energy cascade and direct enstrophy casyayior given byZ,=n/3 will then be a universal measure of
cade. In a number of works, e.¢@], it has been shown that he intermittency independent of the specific scaling proper-
the values of the,, exponents substantially differ from the ties of the given flow[9]. The differences between the 2D
predictions of the K41 theory. These anomalies are attributedq 3p cases enter only into the determination ofahso-
to the impact of intermittency, i.e., the phenomenon of nony,te exponents
uniform distribution of the velocity increments in the flow
field. Therefore, the deviations of the actual values of the §n:§_n§3- (4)

)

Sa(1)~Sp(1) M, L=

w| >

Sn(r)wrgna {n=

The absoluteexponent{; is equal to unity in the 3D ho-
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1063-651X/97/564)/41655)/$10.00 55 4165 © 1997 The American Physical Society



4166 B. PROTAS, S. GOUJON-DURAND, AND J. E. WESFREID 55

An interesting problem is how the presence of physically o
relevant boundary conditions affects the intermittent proper- T Ye F
ties of turbulence and thus the values of thétive scaling ‘j ?{Q ajfg, %é
exponents/,. Recently, Gaudiret al. [11] performed two o )

series of turbulent wake experiments in two different facili-
ties at theexternalReynolds number§.e., based on the free
stream velocity and the obstacle diamgtsgual to 6000 and FIG. 1. Snapshot of the vorticity field in the developed wake
12.000. In the following they will be referred to &xperi-  (rhulence. The presented flow domain reaches as farca@8n-
ment | and experiment |} respectively. These experiments stream. The two colors represent the regions with positive and
show that thel,, exponents vary as a function of the down- negative vorticity. Approximately FOvortex blobsare present in
stream distance from the obstacle. Their main result is thate flow field.
the intermittency induced deviations from the K41 theory are
much stronger in the near wake than in the far wake. Interan infinitesimal increment of a nonanticipating Wiener pro-
action of the flow with boundaries is responsible for the pro-cess andy2v is the amplitude of the Brownian walk with
duction of large scale shear and coherent structures. In sughrepresenting the coefficient of kinematic viscosity. In every
cases, substantial degree of anisotropy is introduced at larggep new vorticity is created in the boundary layer of the
scales, but locally the flow still remains isotropic. Motivated gpstacle in such a way that tme-slip boundary conditions
by these experiments, we hereafter address this set of profyr the velocity field are satisfied. Next, all thertex blobs
lems by means of a numerical simulation. both old and new, undergo advection and random walk, their
The plan of this paper is as follows. Section Il contains ayorticity charges remaining unchanged. The described algo-
short outline of therandom vortex blobmethod that was rithm does not make use of any eddy Viscosity or Subgrid
used in the 2D simulation of the flow. Numerical results modeling.
pertaining to the problem are presented in Sec. Ill. A discus- Using the basic phenomenolo§¥], one can propose an
sion of the results and conclusions are given in Sec. IV.  heuristic argument helping to fix the free parameters of the
method: the diameter of the blaly should correspond to the
Il. NUMERICAL SIMULATION viscous cutoffy, the maximum velocity induced by a single
. ) vortex bloh and the time step of integration should roughly
In the context of the above-introduceelative expo- e of the same order of magnitude as the characteristic ve-
nents, it is possible to investigate intermittency in 2D ﬂowslocity and the characteristic time for the given length scale
in the same way as is done in three dimensions. A numericeﬁ_e_’ the length scale of the viscous cutafj. With these
simulation of the turbulent wake was performed, in Cond"values, the required resolution for the assumed Reynolds

tions closely resembling those of the experimit [11]).  ymber can be achieved. The numbevoftex blobsused in
Usually in the numerical analysis of turbulence pseudospeGne simulations was around .0

tral methods are use@.g.,[13]). They have the disadvan-
tage, however, that they do not admit any boundary condi-

tions apart from periodic ones. In the present analysis, the Ill. RESULTS OF THE NUMERICAL SIMULATION
random vortex blolmethod was used. It seems particularly
well suited to the study of flows where vorticity is concen-
trated in a limited part of the flow domaie.g., wakes, shear

layers, etg. Details concerning the formal foundations and course, as far as this can be achieved within the 2D approxi-

implementation of the method can be found 14-16. Re- .
sults of the application of similar methods to the study of thematlor)' TheexternalReynolds number was around 5000. In

statistical properties of 2D turbulence are presentedlif) pract?cg, t.here were roughly two decades separating the char-

and[18]. A brief description of this method is given below acteristic integral scales from the smallest scales represented
Therandom vortex blolmethod is a Lagrangian approach _by_the viscous cutoffy. The flow domam was gssumeq to be

to modeling viscous fluid flow. It is based on the formal infinite and the obstacle was a circular cylinder. Figure 1

similarity between the 2D vorticity equation and tekker- presents a snapshot of the vorticity field in the developed

Planckequation describing evolution of a stochastic Wienerturbmem wake. The next figuréig. 2 presents the instan-

process . Thus the viscous fluid flow may be approximated as
the evolution of a family ofvortex blobs(i.e., small, but
finite, vorticity particles. In our simulation, everywortex
blobis a smeared point vortex with the cutoff parameier.,

its diameter equal todg and constant vorticity distribution.
Each of them moves according to the stochastiequation

The aim of the numerical simulation was to produce flow
conditions similar to those that can be obtained in experi-
ments performed in turbulent wakes behind bluff bodiefs

dx=\Vdt+2vdW, (5)

wheredx is an infinitesimal displacement of a representative
Lagrangian vorticity carrierV denotes the advectiofi.e., FIG. 2. Instantaneous streamline pattern corresponding to the

deterministi¢ velocity field which is a sum of the potential vorticity field shown above. The presented flow domain reaches
background flow and interactions with other vorticd®y is  12d downstream.
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taneous streamline pattern corresponding to the vorticity dis-  1¢°
tribution shown above.

As was mentioned in the Introduction, our attention fo- 102 L
cused on therelative scaling of the structure functions
S,(r). Similarly, as was done in the experiments of Gaudin =
et al.[11], velocity time series were recorded at a number of =
control points in the wake. All of them were located on the ¢ 5 [
axis, at the following downstream distances from the ob-

stacle: from 2.8 to 25 every 2.5, and from 2% to 4 10 L ]
every 5. Owing to the oscillatory character of the flow in
the wake, the direction of the separation vecftanontinually 1072

varies in time. Thus the structure functions have to be calcu-
lated for the modulus of the velocity vector, rather than for
any of its components. Otherwise, the velocity component 42

would not be parallel to the separation veatawhich would
violate definition(1). In order to computs,(r), the velocity 10'
time series has to be transformed from the time to space
domain. Usually this is accomplished by means ofthglor
hypothesig19] which in the presence of big coherent struc-
tures is known to give inaccurate results. However, in the ~ 197 L
case of extended self-similarity the explicit dependence of
s, on r cancels out and therefore the specific form of the 152 |
t—r transformation is irrelevant. If20] it has been verified

that the ESS scaling does not depend on the particular form 42
of the above transformation. Converged statistics could be
obtained for low order moments only, therefore we restricted

our calculations ton=2,3,4,6. So that various time series _ _
could be directly compared, all of them were normalized to  F'C- 3- Scaling of the structure functio(r), n=2,3,4,6, vs
zero mean and unit normal deviation. r/n at the distancefa) 5d and (b) 25d downstream from the ob-

Statistical moments of odd order are characterized by pars_tacle; the vertical dashed lines represent the limits of the ESS

ticularly bad convergence properties. This means that in orange:

der to obtain reliable results for=3 one needs substantially _ . .
longer time series than for the case of even orders:S“(r)’ n=24.6 are plotted againsy(r) (only points

n=2. n=4. It has been established, howeyet, that this within the ESS range are showriThe distances from the
inconvenience can be overcome when the structure functio
is calculated with respect to the absolute value of the veloc
ity increment, rather than for the increment itself

m

Sn(rm)

r/m

obstacle are the same as above. The range where the scaling

Holds is more extensive, thelative scaling exponentg,,

can be determined unambiguously. Close analysis of both

absoluteandrelative scaling reveals, however, that for big-
SN =(IV(X+r)=V)1". (6)  9ger separations/ 7 there is another, rather short and degen-

erate, scaling regime. In agreement with the properties of 2D
Furthermore, it has been verified [8] that S;(r) scales turbulent flowg 5], it can be identified as the inverse energy
exactly the same asy(r). Thus in our ESS analysis we can cascade. The first scaling regime, shown in Figg) 4nd

useS,(r) instead ofs,(r) 4(b), represents thus the enstrophy cascade.
- Following these lines, theelative scaling exponents for
(1)~ Sa(r) %n. (7)  the enstrophy range were computed ddirthe control points

in the wake. Then for every point related error bars and

Figures 3a) and 3b) present the scaling of the structure lengths of the ESS scaling range were estimated. The depen-
functionsS,(r), n=2,3,4,6 versus the separation distance dence of therelative scaling exponentg,, on the down-
normalized with respect to the viscous cuteff The loca- stream distance from the obstacle is shown in Figs. 5-7 for
tions in the wake to which the plots in Figs(@@and 3b) n=2,4,6, respectively. This is the central result of the
correspond aredband 2%, respectively. It is important to present paper. For comparison, the figures also present the
note that for the smallest separations<10) the structure relative exponents obtained in the laboratory experiments of
functions have atypical concavitgf., e.g.,[1]). This seems Gaudinet al.[11], those reported by Benet al.[8], and the
to be an influence of the viscous cutaff and as such ought predictions of the She and Leveque thefitg] (for the case
to be considered a numerical artifact. of 3D developed isotropic turbulence

As it was already remarked, due to a moderate Reynolds Figure 8 shows error bars for every exponent
number one can hardly find a range where the slope would,,, n=2,4,6 as a function of the downstream distance from
remain constant. Therefore, it is not possible to determine ththe obstacle. The error bar is defined as the standard devia-
absolutescaling exponents with required accuracy. The nextion of the exponent with respect to the power law(Ti.
plots [Figs. 4a) and 4b)] make use of theextended self- Related lengths of the ESS rangexpressed as the number
similarity, i.e., the moments of the structure functions of pairs{S,(r);Ss(r)} taken into account in the computation
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FIG. 6. Dependence of th& relative scaling exponents on the
(a) downstream distance from the obstacle; comparison of the present

results with experimental data and theoretical predictions.

0

10

S scaling. As was earlier found if6] and[21], the values of
3

the scaling exponents and the related error bars considerably

10 , depend on the limits of the range where they are evaluated.
: Thus it was necessary to define uniform criteria for the de-

termination of the lower and upper bounds of the ESS range

in the enstrophy cascade. The lower bound was set equal to a

1 certain multiple of the viscous cutoff length (in our case it

was 10y, comparing to 5 used in[8] and 20; as discussed

in [22], both for the 3D cage when the upper bound was

taken to be a fraction of the integral scale defined28

A—;fwb d 8
_bLL(O) " LL(r) r, ()

whereb | (r) is the longitudinal correlation function for ve-
locity

10° 5 = - . b (r)=(V(x+r)V(x)). 9)

Ss The fraction of A that was taken as the upper limit of the

FIG. 4. ESS scalindenstrophy regimeof the structure func- ESS rgnge in the enstrophy cascade was found to slightly
tionsS,, n=2,4,6, vsS, at the distancet 5d and(b) 25d down- V2 with the downstream distance from the obstacle.

stream from the obstacle; continuous lines represent the power law Consequently, the obtained error bars are_ relatively low,
fits. on the average smaller by one order of magnitude than those

reported in[8] and by two orders than those obtained 9
of the relative exponents in the enstrophy radggre pre- This is an important fact, since the variations of the expo-
sented in Fig. 9. At a given location, the length of the scalingnents are rather small compared to their average departure
range is the same for all the moments. These two parametefi®om the linear K41 prediction. Thus, in order to bring out
are a measure of thgoodness of the fiand represent the these slight variations, a higher accuracy level was required
quality of the scaling. than that which was necessitated by the objectives of the
Great care was taken in order to obtain good quality of theabove-cited works.
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FIG. 5. Dependence of thg relative scaling exponents on the FIG. 7. Dependence of thé, relative scaling exponents on the
downstream distance from the obstacle; comparison of the presedbwnstream distance from the obstacle; comparison of the present
results with experimental data and theoretical predictions. results with experimental data and theoretical predictions.
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_ FIG. 8. Values of the error bars for the exponents FIG. 9. Length(defined in the tejtof the ESS scaling range as
¢n, N=2,4,6, as a function of the downstream distance from thea function of the downstream distance from the obstacle.
obstacle.
certain degree of universality with respect to the effects of
V. DISCUSSION OF THE RESULTS AND CONCLUSIONS intermittency in 2D and 3D flows. Another important obser-
vation is that the relative scaling exponents are not uniquely
First of all, it ought to be emphasized that in terms of thedetermined and independent of the large-scale structure of
relative scaling exponents,,, the present results obtained in the flow. Explanation of the discovered anomalies remains
the 2D enstrophy range confirm what we observed in the rean open question. There is some hope however that certain
3D laboratory experimentgll]. This is in fact at variance hints may come from the analysis of the topology of the flow
with the statement made [7] that ESS does not hold in the patterns in terms of shear and its impact on the stretching of
presence of boundaries where strong shear breaks the largerticity and vorticity gradients in two and three dimensions,
scale homogeneity and isotropy of the flow. Nevertheless, atespectively.
such locations the length of the ESS scaling range has been
found to be shorter. It must be stressed that the present re-
sults are compatible with those reported by Besizal. in [8]
which were obtained in 3D turbulent wake at the down- B.P. acknowledges the financial support of the French
stream location ok=20d (cf. Figs. 5-7 at the Reynolds Embassy in WarsawGrant CIES No. 16026 7Eand the hos-
number similar as if11]. It is visible as one moves down- pitality of the PMMH-ESPCI Laboratory. B.P. is also grate-
stream that the values of the scaling exponents approachfal to P. Wald for efficient implementation of the Greengard-
certain asymptotic limit. Rokhlin algorithm, which considerably enhanced the
From the collapse of experimentdle., 3D) and numeri-  effectiveness of the numerical simulations. A. Babiano, E.
cal (i.e., 2D enstrophy cascaddata in Figs. 5-7 it follows Gaudin, G. Stolovitzky, and J. Wojciechowski are also
that the relative scaling exponents, in fact, embody a kindly acknowledged for helpful discussions and assistance.
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