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Scaling properties of two-dimensional turbulence in wakes behind bluff bodies
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This paper contains an analysis of the scaling properties of two-dimensional~2D! turbulence obtained by
means of numerical simulation using thevortex blobmethod. The flow under consideration is the turbulent
wake behind a bluff body with a developed enstrophy cascade and reduced inverse energy cascade. The
concept ofextended self-similarity~ESS! and the associatedrelative scaling exponentsz̄m,n5zn /zm are in-
voked within the framework of 2D turbulence. The scaling exponents in the enstrophy range are found to
systematically vary with the downstream distance from the obstacle, thus revealing their nonuniqueness. In
terms of therelativeexponents, the present results quantitatively agree with recent laboratory experiments of
Gaudinet al. @PMMH-ESPCI Report No. A 96/57, 1996~unpublished!#. Error bars and the accuracy of the
ESS scaling are carefully checked.@S1063-651X~97!06303-4#

PACS number~s!: 47.27.Jv, 47.27.Nz, 47.27.Vf
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I. INTRODUCTION

In recent years, new interest has emerged concerning
scaling properties of turbulent flows, e.g.,@1,2#. They are
reflected in the scale invariance of the Navier-Stokes eq
tions, both in two dimensions and three dimensions@3#. Re-
search is mainly focused on the deviations from the c
ebrated K41 theory@4#. Usually, they become apparent in th
anomalous behavior of the velocity structure functions wh
are defined in the following way:

sn~r !5^@V~x1r !2V~x!#n&, ~1!

where r denotes the separation distance,V is the velocity
component parallel tor , and^ & represents the ensemble a
erage. In this respect, in the three-dimensional~3D! case, the
K41 theory predicts that the scaling exponent is a lin
function of the order of the structure function

sn~r !;r zn, zn5
n

3
. ~2!

On the other hand, in the 2D case, owing to the conserva
of both energy and enstrophy, there are two distinct sca
regimes@5#: inverse energy cascade and direct enstrophy
cade. In a number of works, e.g.,@6#, it has been shown tha
the values of thezn exponents substantially differ from th
predictions of the K41 theory. These anomalies are attribu
to the impact of intermittency, i.e., the phenomenon of n
uniform distribution of the velocity increments in the flo
field. Therefore, the deviations of the actual values of
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exponentszn from the K41 prediction might be regarded as
measure of the intermittency effects@1#.

New possibilities arose when the concept ofextended self-
similarity ~ESS! was developed@7#. It states that when one
moment is plotted against another, then the scaling is m
more pronounced

sn~r !;sm~r ! z̄m,n, z̄m,n5
zn
zm

. ~3!

In other words, the ratio of two scaling exponents~hence-
forth, denoted by an overbar! stays constant for a wide
range of scales than each of them does when taken s
rately. As was shown in@8#, the ESS scaling comprises no
only theinertial range, but also reaches as far down as a fe
Kolmogorov scalesh. Consequently, the scaling exponen
zm,n can be computed with much higher accuracy even
relatively moderate Reynolds numbers. Another import
feature of ESS is that it provides information in terms of t
relativescaling exponentszm,n , which are more universal in
that they remain valid also in the 2D case@9#. Thus this
concept provides a uniform framework for the investigati
of anomalous scaling properties of both 2D and 3D flow
The deviation of the exponentzn5z3,n from the linear be-
havior given byzn5n/3 will then be a universal measure o
the intermittency independent of the specific scaling prop
ties of the given flow@9#. The differences between the 2
and 3D cases enter only into the determination of theabso-
lute exponents

zn5 z̄nz3 . ~4!

The absoluteexponentz3 is equal to unity in the 3D ho-
mogeneous and isotropic case@1# and in the inverse energ
cascade regime in two dimensions, and equal to 3 in the
enstrophy cascade regime@10#.
4165 © 1997 The American Physical Society
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An interesting problem is how the presence of physica
relevant boundary conditions affects the intermittent prop
ties of turbulence and thus the values of therelative scaling
exponentsz̄n. Recently, Gaudinet al. @11# performed two
series of turbulent wake experiments in two different fac
ties at theexternalReynolds numbers~i.e., based on the free
stream velocity and the obstacle diameter! equal to 6000 and
12 000. In the following they will be referred to asexperi-
ment I and experiment II, respectively. These experimen
show that thezn exponents vary as a function of the dow
stream distance from the obstacle. Their main result is
the intermittency induced deviations from the K41 theory
much stronger in the near wake than in the far wake. In
action of the flow with boundaries is responsible for the p
duction of large scale shear and coherent structures. In
cases, substantial degree of anisotropy is introduced at l
scales, but locally the flow still remains isotropic. Motivat
by these experiments, we hereafter address this set of p
lems by means of a numerical simulation.

The plan of this paper is as follows. Section II contain
short outline of therandom vortex blobmethod that was
used in the 2D simulation of the flow. Numerical resu
pertaining to the problem are presented in Sec. III. A disc
sion of the results and conclusions are given in Sec. IV.

II. NUMERICAL SIMULATION

In the context of the above-introducedrelative expo-
nents, it is possible to investigate intermittency in 2D flo
in the same way as is done in three dimensions. A numer
simulation of the turbulent wake was performed, in con
tions closely resembling those of the experiment~cf. @11#!.
Usually in the numerical analysis of turbulence pseudosp
tral methods are used~e.g., @13#!. They have the disadvan
tage, however, that they do not admit any boundary con
tions apart from periodic ones. In the present analysis,
random vortex blobmethod was used. It seems particula
well suited to the study of flows where vorticity is conce
trated in a limited part of the flow domain~e.g., wakes, shea
layers, etc.!. Details concerning the formal foundations a
implementation of the method can be found in@14–16#. Re-
sults of the application of similar methods to the study of
statistical properties of 2D turbulence are presented in@17#
and @18#. A brief description of this method is given below

Therandom vortex blobmethod is a Lagrangian approac
to modeling viscous fluid flow. It is based on the form
similarity between the 2D vorticity equation and theFokker-
Planckequation describing evolution of a stochastic Wien
process . Thus the viscous fluid flow may be approximate
the evolution of a family ofvortex blobs~i.e., small, but
finite, vorticity particles!. In our simulation, everyvortex
blob is a smeared point vortex with the cutoff parameter~i.e.,
its diameter! equal todB and constant vorticity distribution
Each of them moves according to the stochasticIto equation

dx5Vdt1A2ndW, ~5!

wheredx is an infinitesimal displacement of a representat
Lagrangian vorticity carrier,V denotes the advection~i.e.,
deterministic! velocity field which is a sum of the potentia
background flow and interactions with other vortices,dW is
y
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an infinitesimal increment of a nonanticipating Wiener pro-
cess andA2n is the amplitude of the Brownian walk with
n representing the coefficient of kinematic viscosity. In every
step new vorticity is created in the boundary layer of the
obstacle in such a way that theno-slip boundary conditions
for the velocity field are satisfied. Next, all thevortex blobs,
both old and new, undergo advection and random walk, their
vorticity charges remaining unchanged. The described algo-
rithm does not make use of any eddy viscosity or subgrid
modeling.

Using the basic phenomenology@1#, one can propose an
heuristic argument helping to fix the free parameters of the
method: the diameter of the blobdB should correspond to the
viscous cutoffh, the maximum velocity induced by a single
vortex blob, and the time step of integration should roughly
be of the same order of magnitude as the characteristic ve
locity and the characteristic time for the given length scale
~i.e., the length scale of the viscous cutoffh). With these
values, the required resolution for the assumed Reynolds
number can be achieved. The number ofvortex blobsused in
the simulations was around 105.

III. RESULTS OF THE NUMERICAL SIMULATION

The aim of the numerical simulation was to produce flow
conditions similar to those that can be obtained in experi-
ments performed in turbulent wakes behind bluff bodies~of
course, as far as this can be achieved within the 2D approxi-
mation!. TheexternalReynolds number was around 5000. In
practice, there were roughly two decades separating the char
acteristic integral scales from the smallest scales represente
by the viscous cutoffh. The flow domain was assumed to be
infinite and the obstacle was a circular cylinder. Figure 1
presents a snapshot of the vorticity field in the developed
turbulent wake. The next figure~Fig. 2! presents the instan-

FIG. 1. Snapshot of the vorticity field in the developed wake
turbulence. The presented flow domain reaches as far as 48d down-
stream. The two colors represent the regions with positive and
negative vorticity. Approximately 105 vortex blobsare present in
the flow field.

FIG. 2. Instantaneous streamline pattern corresponding to the
vorticity field shown above. The presented flow domain reaches
12d downstream.
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55 4167SCALING PROPERTIES OF TWO-DIMENSIONAL . . .
taneous streamline pattern corresponding to the vorticity
tribution shown above.

As was mentioned in the Introduction, our attention f
cused on therelative scaling of the structure function
sn(r ). Similarly, as was done in the experiments of Gau
et al. @11#, velocity time series were recorded at a number
control points in the wake. All of them were located on t
axis, at the following downstream distances from the o
stacle: from 2.5d to 25d every 2.5d, and from 25d to 45d
every 5d. Owing to the oscillatory character of the flow i
the wake, the direction of the separation vectorrW continually
varies in time. Thus the structure functions have to be ca
lated for the modulus of the velocity vector, rather than
any of its components. Otherwise, the velocity compon
would not be parallel to the separation vectorrW which would
violate definition~1!. In order to computesn(r ), the velocity
time series has to be transformed from the time to sp
domain. Usually this is accomplished by means of theTaylor
hypothesis@19# which in the presence of big coherent stru
tures is known to give inaccurate results. However, in
case of extended self-similarity the explicit dependence
sn on r cancels out and therefore the specific form of t
t°r transformation is irrelevant. In@20# it has been verified
that the ESS scaling does not depend on the particular f
of the above transformation. Converged statistics could
obtained for low order moments only, therefore we restric
our calculations ton52,3,4,6. So that various time serie
could be directly compared, all of them were normalized
zero mean and unit normal deviation.

Statistical moments of odd order are characterized by
ticularly bad convergence properties. This means that in
der to obtain reliable results forn53 one needs substantiall
longer time series than for the case of even orde
n52, n54. It has been established, however@8#, that this
inconvenience can be overcome when the structure func
is calculated with respect to the absolute value of the ve
ity increment, rather than for the increment itself

Sn~r !5^u@V~x1r !2V~x!#un&. ~6!

Furthermore, it has been verified in@8# that S3(r ) scales
exactly the same ass3(r ). Thus in our ESS analysis we ca
useS3(r ) instead ofs3(r )

sn~r !;S3~r ! z̄ n. ~7!

Figures 3~a! and 3~b! present the scaling of the structu
functionsSn(r ), n52,3,4,6 versus the separation distancer
normalized with respect to the viscous cutoffh. The loca-
tions in the wake to which the plots in Figs. 3~a! and 3~b!
correspond are 5d and 25d, respectively. It is important to
note that for the smallest separations (r /h,10) the structure
functions have atypical concavity~cf., e.g.,@1#!. This seems
to be an influence of the viscous cutoffdB and as such ough
to be considered a numerical artifact.

As it was already remarked, due to a moderate Reyno
number one can hardly find a range where the slope wo
remain constant. Therefore, it is not possible to determine
absolutescaling exponents with required accuracy. The n
plots @Figs. 4~a! and 4~b!# make use of theextended self-
similarity, i.e., the moments of the structure functio
s-
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Sn(r ), n52,4,6 are plotted againstS3(r ) ~only points
within the ESS range are shown!. The distances from the
obstacle are the same as above. The range where the sc
holds is more extensive, therelative scaling exponentszn
can be determined unambiguously. Close analysis of b
absoluteand relative scaling reveals, however, that for big
ger separationsr /h there is another, rather short and dege
erate, scaling regime. In agreement with the properties of
turbulent flows@5#, it can be identified as the inverse ener
cascade. The first scaling regime, shown in Figs. 4~a! and
4~b!, represents thus the enstrophy cascade.

Following these lines, therelative scaling exponents for
the enstrophy range were computed forall the control points
in the wake. Then for every point related error bars a
lengths of the ESS scaling range were estimated. The de
dence of therelative scaling exponentszn on the down-
stream distance from the obstacle is shown in Figs. 5–7
n52,4,6, respectively. This is the central result of t
present paper. For comparison, the figures also presen
relativeexponents obtained in the laboratory experiments
Gaudinet al. @11#, those reported by Benziet al. @8#, and the
predictions of the She and Leveque theory@12# ~for the case
of 3D developed isotropic turbulence!.

Figure 8 shows error bars for every expone
zn , n52,4,6 as a function of the downstream distance fr
the obstacle. The error bar is defined as the standard de
tion of the exponent with respect to the power law fit~7!.
Related lengths of the ESS range@expressed as the numbe
of pairs$Sn(r );S3(r )% taken into account in the computatio

FIG. 3. Scaling of the structure functionsSn(r ), n52,3,4,6, vs
r /h at the distance:~a! 5d and ~b! 25d downstream from the ob-
stacle; the vertical dashed lines represent the limits of the E
range.
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4168 55B. PROTAS, S. GOUJON-DURAND, AND J. E. WESFREID
of the relative exponents in the enstrophy range# are pre-
sented in Fig. 9. At a given location, the length of the scal
range is the same for all the moments. These two parame
are a measure of thegoodness of the fitand represent the
quality of the scaling.

Great care was taken in order to obtain good quality of

FIG. 4. ESS scaling~enstrophy regime! of the structure func-
tionsSn , n52,4,6, vsS3 at the distance:~a! 5d and~b! 25d down-
stream from the obstacle; continuous lines represent the power
fits.

FIG. 5. Dependence of thez2 relative scaling exponents on th
downstream distance from the obstacle; comparison of the pre
results with experimental data and theoretical predictions.
g
ers

e

scaling. As was earlier found in@6# and @21#, the values of
the scaling exponents and the related error bars consider
depend on the limits of the range where they are evalua
Thus it was necessary to define uniform criteria for the
termination of the lower and upper bounds of the ESS ra
in the enstrophy cascade. The lower bound was set equa
certain multiple of the viscous cutoff lengthh ~in our case it
was 10h, comparing to 5h used in@8# and 20h as discussed
in @22#, both for the 3D case!, when the upper bound wa
taken to be a fraction of the integral scale defined as@23#

L5
1

bLL~0!
E
0

`

bLL~r !dr, ~8!

wherebLL(r ) is the longitudinal correlation function for ve
locity

bLL~r !5^V~x1r !V~x!&. ~9!

The fraction ofL that was taken as the upper limit of th
ESS range in the enstrophy cascade was found to slig
vary with the downstream distance from the obstacle.

Consequently, the obtained error bars are relatively lo
on the average smaller by one order of magnitude than th
reported in@8# and by two orders than those obtained in@9#.
This is an important fact, since the variations of the exp
nents are rather small compared to their average depa
from the linear K41 prediction. Thus, in order to bring o
these slight variations, a higher accuracy level was requ
than that which was necessitated by the objectives of
above-cited works.

FIG. 6. Dependence of thez4 relative scaling exponents on th
downstream distance from the obstacle; comparison of the pre
results with experimental data and theoretical predictions.

FIG. 7. Dependence of thez6 relative scaling exponents on th
downstream distance from the obstacle; comparison of the pre
results with experimental data and theoretical predictions.
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IV. DISCUSSION OF THE RESULTS AND CONCLUSIONS

First of all, it ought to be emphasized that in terms of th
relativescaling exponentszn , the present results obtained i
the 2D enstrophy range confirm what we observed in the r
3D laboratory experiments@11#. This is in fact at variance
with the statement made in@7# that ESS does not hold in the
presence of boundaries where strong shear breaks the l
scale homogeneity and isotropy of the flow. Nevertheless
such locations the length of the ESS scaling range has b
found to be shorter. It must be stressed that the present
sults are compatible with those reported by Benziet al. in @8#
which were obtained in 3D turbulent wake at the dow
stream location ofx520d ~cf. Figs. 5–7! at the Reynolds
number similar as in@11#. It is visible as one moves down-
stream that the values of the scaling exponents approac
certain asymptotic limit.

From the collapse of experimental~i.e., 3D! and numeri-
cal ~i.e., 2D enstrophy cascade! data in Figs. 5–7 it follows
that the relative scaling exponentszn , in fact, embody a

FIG. 8. Values of the error bars for the exponen
zn , n52,4,6, as a function of the downstream distance from t
obstacle.
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certain degree of universality with respect to the effects
intermittency in 2D and 3D flows. Another important obse
vation is that the relative scaling exponents are not uniqu
determined and independent of the large-scale structur
the flow. Explanation of the discovered anomalies rema
an open question. There is some hope however that ce
hints may come from the analysis of the topology of the flo
patterns in terms of shear and its impact on the stretchin
vorticity and vorticity gradients in two and three dimension
respectively.
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