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Abstract. Two mathematical approaches are combined to calculate high Reynolds number in-
compressible fluid–structure interaction: a wavelet method to dynamically adapt the computational
grid to flow intermittency and obstacle motion, and Brinkman penalization to enforce solid bound-
aries of arbitrary complexity. We also implement a wavelet based multilevel solver for the Poisson
problem for the pressure at each time step. The method is applied to two-dimensional flow around
fixed and moving cylinders for Reynolds numbers in the range 3×101 ≤ Re ≤ 105. The compression
ratios up to 1 000 are achieved. For the first time it is demonstrated in actual dynamic simulations
that the compression scales like Re1/2 over five orders of magnitude, while computational complexity
scales like Re. This represents a significant improvement over the classical complexity estimate of
Re9/4 for two-dimensional turbulence.
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1. Introduction. One of the most practically important problems in aerody-
namics is calculating moderate to high Reynolds number incompressible flow around
solid obstacles of arbitrary shape. This problem arises in aerodynamics (e.g. turbu-
lent flow over the wings and fuselage of airplanes), in off-shore drilling (e.g. water
flow around riser tubes transporting oil from the sea bed to the surface), and in the
wind engineering of buildings. In each case the primary difficulty arises from the need
to calculate turbulent or transitional flow with boundary conditions on complicated
domains. In addition, it may be important to allow for the obstacle to move or deform
in response to the applied fluid forces (this motion in turn affects the flow).

In this paper we combine two mathematical approaches to calculate turbulent flow
in complex domains. The first technique, the adaptive wavelet collocation method,
tackles the problem of efficiently resolving a high Reynolds number flow in compli-
cated geometries (where grid resolution should depend both on time and location).
The second technique, Brinkman penalization, addresses the problem of efficiently
implementing solid boundaries of arbitrary complexity.

The adaptive wavelet method is appropriate for turbulence since the wavelets
(which are localized in both space and scale) adapt the numerical resolution naturally
to the intermittent structure of turbulence at small scales. The wavelet method thus
allows turbulent flows to be calculated with a greatly reduced number of modes while
controlling the L∞-norm error. Furthermore, the computational cost of the algorithm
is independent of the dimensionality of the problem and is O(N ), where N is the
total number of wavelets actually used. Wavelet methods for differential equations
may be divided into two classes: Adaptive Wavelet Galerkin Methods (AWGM), for
which much rigorous analysis has been done (e.g. [11, 13, 33]), and Adaptive Wavelet
Collocation Methods (AWCM) for which numerical results are more advanced (e.g.
Ref. [19, 20, 39, 40, 41, 43, 44]). We use the AWCM since it is more straightforward
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to implement for nonlinear equations, and can be easily modified for a wide class of
partial differential equations. The AWCM is implemented using second generation
wavelets, which allows the order of the method to be easily varied (we generally use a
sixth-order method). Another advantage of the wavelet collocation approach is that
it is straightforward to apply in both two and three dimensions.

Parallel to the development of efficient wavelet codes for turbulence, we have
been investigating the use of the Brinkman penalization to simulate the presence
of arbitrarily complex solid boundaries [23]. This technique, originally proposed by
Arquis & Caltagirone [3], allows boundary conditions to be enforced to a specified
precision without changing the numerical method (or grid) used to solve the equations.
The main advantage of this method, compared to other penalization type methods,
is that the error can be controlled via a penalization parameter [2]. It can also be
shown that the solution of the penalized equations converges to the exact solution
in the limit as the penalization parameter tends to zero [1]. Because this volume
penalization is simple and cheap to calculate, it is well-suited to moving obstacles.
The adaptive wavelet collocation method then allows the computational grid to follow
the obstacle, thus avoiding accelerating reference frames, or large areas of fine grids.

In previous work [24, 25, 41] we investigated AWCM with penalization of the two-
dimensional vorticity equation (i.e. the curl of the Brinkman penalization). Schneider
& Farge [32] have also developed such an approach, using vaguelettes. This approach
works well for moderate Reynolds numbers (Re < 103), but is inaccurate for larger
Reynolds numbers. We concluded that the error was due to the fact that in the vor-
ticity formulation the penalization is a δ−function surface penalization. This singular
forcing (similar to Peskin’s [30] approach) is only stabilized by a sufficiently large
viscosity. We make some comments on the difference between vorticity and velocity
penalization in §5.4 below.

In this paper we combine the adaptive wavelet collocation method with Brinkman
penalization to solve the incompressible Navier–Stokes equations in primitive vari-
able form. Due to the fact that the wavelet collocation method does not utilize
divergence-free wavelets, we use a standard split-step method in time, where the first
step produces a non-solenoidal velocity field. This intermediate velocity is then made
divergence-free by solving a Poisson equation for the pressure. It is well-known that
solving the Poisson equation is the most computationally intensive part of split step
methods. Thus, in order to solve the Poisson equation efficiently, we developed a
multilevel elliptic solver that makes use of the adapted multiscale wavelet collocation
grid. The wavelet multilevel elliptic solver will be described in detail in a companion
article. The entire numerical method therefore has complexity O(N ), where N is the
number of active wavelets or grid points. The resulting method is very general: it can
be applied to flow over a large range of Reynolds numbers with or without obstacles of
arbitrary shape and motion, and with a variety of boundary conditions. It is easy to
modify the spatial order of the method and, since the grid adapts dynamically, there
is no need to custom-design meshes for particular problems. The adaptive wavelet col-
location method is described in §2, while the Brinkman penalization and time scheme
are explained in sections 3 and 4.

In §5 we present results from the adaptive wavelet collocation method combined
with Brinkman penalization. By calculating the flow around a tightly packed periodic
array of cylinders, we are able to show that the number of wavelets scales like Re1/2

and the overall computational complexity scales like Re for 3× 101 ≤ Re ≤ 105. This
represents a significant improvement over the usual complexity estimate of Re9/4,
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and confirms the usefulness of adaptive wavelet techniques for high Reynolds number
flow. The wavelet/Brinkman method is also applied to fixed cylinders at Re = 100 and
Re = 3 000, and to the case where the cylinder motion is coupled to the fluid forces.
Because of the large intermittency of these flows we typically obtain compression
ratios of between 270 and 1 000.

Finally, we summarize the main results of this research in §6, and make some
remarks on the extension of the method to three dimensional flows. The high com-
pressions achieved, and the fact that the number of grid points scales like Re1/2 over
many orders of magnitude suggests that our method is promising for high Reynolds
number turbulence.

2. Adaptive wavelet collocation method. The numerical method is formally
derived by evaluating the governing partial differential equations at collocation points,
which results in a system of nonlinear ordinary differential-algebraic equations de-
scribing the evolution of the solution at these collocation points. The use of a col-
location method means that the calculation of nonlinear terms can be done more
simply than with wavelet-Galerkin methods [4, 7, 19, 22, 28]. However, Cohen et
al. [11, 13] have recently developed an improved AWGM to evaluate nonlinear func-
tions of wavelet expansions, and this technique could prove useful for the advection
term of the Navier–Stokes. In order for the algorithm to resolve all the structures
appearing in the solution and yet be efficient in terms of minimizing the number of
unknowns, the computational grid should adapt dynamically in time to reflect the
local structure of the solution, i.e. high resolution computations should be carried
out only in those regions with sharp gradients.

In this section we briefly review the dynamically adaptive wavelet collocation
method (for more details please see Refs. [39, 40]). In particular, we will sketch
efficient wavelet-based procedures for dynamic grid adaptation and calculation of
spatial derivatives.

2.1. Grid adaptation. Grid adaptation occurs naturally in wavelet methods.
To illustrate the algorithm, let us consider a function f(x), defined on a closed n-
dimensional rectangular domain Ω. We use tensor product second generation wavelets
[36, 37], which are a generalization of biorthogonal wavelets [14, 12] and are more easily
applied to functions defined on domains more general than Rn. Second generation
wavelets form a Reisz basis for L2 space, with the wavelets being local in both space
and frequency, and having many vanishing polynomial moments, but without the
translation and dilation invariance of their biorthogonal cousins. Despite the loss
of two fundamental properties of wavelet bases, second generation wavelets retain
many of the useful features of biorthogonal wavelets, including the existence of a fast
transform. Second generation wavelets are constructed on a set of grids,

Gj =
{
xj
k ∈ Ω : k ∈ Kj

}
, j ∈ J ,(2.1)

where k = (k1, . . . , kn) and grid points xj
k = (xj

1,k1
, . . . , xj

n,kn
) are constructed as

a tensor product of uniformly or non-uniformly spaced one-dimensional grids. The
only restriction is that each individual set of one-dimensional grids is nested (xj

m,kl
=

xj+1
m,2kl

, m = 1, . . . , n), which guarantees the nestedness of the grids, i.e. Gj ⊂ Gj+1.
The procedure of constructing n-dimensional scaling functions φj

k(x) and a family
of n-dimensional wavelets ψµ,j

l (x), µ = 1, . . . , 2n − 1 on n-dimensional dyadic grid is
described in Ref. [39]. Once wavelets and scaling functions are constructed, a function
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f(x) can be decomposed as

f(x) =
∑
k∈K0

c0kφ
0
k(x) +

+∞∑
j=0

2n−1∑
µ=1

∑
l∈Lµ,j

dµ,j
l ψµ,j

l (x).(2.2)

For functions which contain isolated small scales on a large-scale background, most
wavelet coefficients are small, thus we retain a good approximation even after discard-
ing a large number of wavelets with small coefficients. Intuitively, the coefficient dµ,j

l

will be small unless the f(x) has variation on the scale of j in the immediate vicinity
of wavelet ψµ,j

l (x). In fact, the error incurred by ignoring coefficients with magnitude
lower than ε is O(ε). More precisely, if we rewrite equation (2.2) as a sum of two
terms composed respectively of wavelets whose amplitude is above and below some
prescribed threshold ε, i.e. f(x) = f≥(x) + f<(x), then it can be shown [15, 39, 40]
that

|f(x)− f≥(x)| ≤ C1ε ≤ C2N−p/n,(2.3)

where N is the number of significant wavelet coefficients, p is the order of the wavelets,
and n is the dimensionality of the problem.

In order to realize the benefits of the wavelet compression, we need to be able
to reconstruct f≥(x) from the subset of N grid points. Note that every wavelet
ψµ,j

l (x) is uniquely associated with a collocation point. Consequently, the collocation
point should be omitted from the computational grid if the associated wavelet is
omitted from the approximation. This procedure results in a set of nested adaptive
computational grids Gj

≥ ⊂ Gj , such that Gj
≥ ⊂ Gj+1

≥ for any j < J − 1, where J is the
finest level of resolution present in approximation f≥(x).

When solving the evolution equations an additional criterion for grid adaptation
should be added. The computational grid should consist of grid points associated
with wavelets whose coefficients are significant or could become significant during a
time step. In other words, at any instant in time, the computation grid should include
points associated with wavelets belonging to an adjacent zone of wavelets for which
the magnitude of their coefficients is greater then an a priori prescribed threshold ε.
This point is discussed in greater detail in §2.3 below.

2.2. Calculation of spatial derivatives on an adaptive grid. When solv-
ing partial differential equations numerically, it is necessary to obtain derivatives of a
function from its values at collocation points. In this section we describe an efficient
procedure for calculating spatial derivatives [39, 40], which takes advantage of the
multiresolution wavelet decomposition, fast wavelet transform, and uses finite differ-
ence differentiation. In other words we make wavelets do what they do well: compress
and interpolate. Finite differences do the rest: differentiate polynomials.

The differentiation procedure is based on the interpolating properties of second
generation wavelets. We recall that wavelet coefficients dµ,j

l measure the difference
between the approximation of the function at the j + 1 level of resolution and its
representation at the j level of resolution. Thus if there are no points in the immediate
vicinity of a grid point xj

k, i.e. |dµ,j
m | < ε for all the neighboring points, and points

xj+1
(2k1±1,...,2kn±1) are not present in Gj+1

≥ , then there exist some neighborhood of xj
k,

where the actual function is well approximated by a wavelet interpolant based on cjm.
Thus differentiating this local polynomial gives us the value of the derivative of the

function at that particular location. Let us denote by Dj
≥ a collection of such points
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at j level of resolution. Then the procedure for finding derivatives at all grid points
consists of the following steps. First, knowing the values of a function on an adaptive
computational grid G≥, perform wavelet transform. Next, recursively reconstruct the
function starting from the coarsest level of resolution. On each level of resolution j
find derivatives of the function at grid points that belong to Dj

≥. At the end of the
inverse wavelet transform we have derivatives of the function at all grid points. The
computational cost of calculating spatial derivatives is roughly the same as the cost
of forward and inverse wavelet transforms.

2.3. Numerical algorithm. The three basic steps of the numerical algorithm
are then as follows (bold symbols denote n-dimensional vectors u ≡ (u1, . . . , un) and
k ≡ (k1, . . . , kn)):

1. Knowing the values of the solution uJ
k(t), we compute the values of wavelet

coefficients corresponding to each component of the solution using the fast
wavelet transform. For a given threshold ε we adjust Gt+∆t

≥ based on the
magnitude of the wavelet coefficients, assigning a value dµ,j

k = 0 for the new
gridpoints. As described below, we then add nearest neighbours in position
and scale to account for the change in the solution from t to t+ ∆t.

2. If there is no change between computational grids Gt
≥ and Gt+∆t

≥ at time t
and t+∆t, we go directly to step 3. Otherwise, we compute the values of the
solution at the collocation points Gt+∆t

≥ , which are not included in Gt
≥.

3. We integrate the resulting system of ordinary differential equations to obtain
new values uJ

k(t + ∆t) at positions on the irregular grid Gt+∆t
≥ and go back

to step 1,
With such an algorithm the grid of collocation points adapts dynamically in time to
follow local structures that appear in the solution. Note that by omitting wavelets
with coefficients below a threshold parameter ε we automatically control the L∞-norm
error of approximation (the L∞-norm error of the reconstruction is bounded by ε).
Thus the wavelet collocation method has another important feature: active control
of the accuracy of the solution. The smaller ε is chosen to be, the smaller the error
of the solution is. (Note that ε is properly normalized for each variable so that for
a variable f , εf = ε||f ||∞.) In typical applications the normalized value of ε varies
between 10−2 and 10−5. As the value of ε increases, fewer grid points are used in the
solution.

The method is made truly dynamical by allowing for the change in the solution
over one time step by adding nearest neighbor wavelets (i.e. grid points) in position
and scale. Adding nearest neighbors in position corresponds to a CFL criterion of
one. Since the scales are dyadic, adding nearest neighbours in scale means allowing
for the creation of scales twice as small via the quadratic nonlinearity. Because grid
adaptation is very cheap, it is done at each time step which means the grid closely
follows the strong gradients of the flow. We choose to adapt our grid based on velocity
only, which produces good results. Without the addition of nearest neighbours the
method would be equivalent to an nonlinear wavelet compression of the solution at
each time step (a sort of “image” compression). In our method we adapt only on the
velocity field, but we could also adapt on other quantities (such as scalar concentra-
tion). A typical dynamically adapted grid is shown at each scale in Fig. 5.5. Note
how the finest grids are needed only in the boundary layer.

Refinement of the grid based on nonlinear wavelet filtering is the basis of the
coherent vortex simulation (CVS) method [16, 33] and Stochastic Coherent Adaptive
Large Eddy Simulation (SCALES) method [18]. In CVS, it is proposed that large
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values of ε (e.g. ε = 10−2) could be used if the effect of the neglected wavelets is
modelled stochastically. This should be especially straightforward for two dimensional
turbulence since Farge et al. [16] showed that the neglected modes have Gaussian
statistics. In SCALES, it is proposed to use even larger values of ε, so only the
most energetic part of the coherent vortices are simulated in the resolved field. The
effect of the discarded wavelets is then modelled using dual stochastic-deterministic
model [18]. In this paper we do not use such subgrid-scale models, and therefore must
use a relatively small threshold, ε = 10−4.

3. Brinkman penalization. Let us consider a viscous incompressible fluid gov-
erned by the Navier–Stokes equations

∂u

∂t
+ (u + U) · ∇u +∇P = ν∆u,(3.1)

∇ · u = 0,(3.2)

where u is the velocity, P is the pressure and U is an imposed mean flow. We consider
here the case where the fluid occupies the complement in the plane R2 of a set of
obstacles Oi. The problem is solved in a rectangular domain Ω = [L1, L2]× [M1,M2]
containing all the obstacles Oi. To these equations are added appropriate external
(inflow, outflow and side boundary conditions), which are discussed further below.

On the surface of the obstacles the velocity must satisfy the no-slip condition,

u + U = Uo on ∂Oi, ∀i,(3.3)

where Uo is the velocity of the obstacle. To model the effect of the no-slip boundary
conditions on the obstacles Oi without explicitly imposing (3.3) we follow Angot et
al. [2] by replacing (3.1-3.3) by the following set of L2-penalized equations

∂uη

∂t
+ (uη + U) · ∇uη +∇Pη = ν∆uη −

1
η
χ(x, t)(uη + U −Uo),(3.4)

∇ · uη = 0,(3.5)

where Uo is the obstacle’s velocity. Note that equations (3.4-3.5) are valid in the entire
domain Ω: the last term on the right hand side of (3.4) is a volume penalization of the
flow inside the obstacle. Here 0 < η � 1 is a penalization coefficient and χ denotes
the characteristic (or mask) function

χ(x, t) =
{

1 if x ∈ Oi,
0 otherwise.(3.6)

Angot [1] proved that the solution of the penalized equations (3.4-3.5) converge to that
of the Navier–Stokes equations (3.1-3.2) with the correct boundary conditions (3.3)
as η → 0. More precisely, the upper bound on the global error of the L2-penalization
was shown to be [1]

||u− uη||H1(Ω) = O(η1/4).(3.7)

In the specific case of impulsively started flow over a plane Kevlahan & Ghidaglia [23]
showed that the error is actually lower: O(η1/2). It seems reasonable that this is the
sharp estimate in the general case as well.

This volume penalization has been implemented in a finite difference code [26] for
two-dimensional flow around a cylinder, and was found to give good results. In fact,
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we find that the actual error is slightly better, O(η). It is important to note that η
is an arbitrary parameter, independent of the spatial or temporal discretization, and
thus the boundary conditions can be enforced to any desired accuracy by choosing η
appropriately. This property distinguishes the Brinkman method from other penal-
ization schemes and allows the error to be controlled precisely. We have found that
η = 10−4 gives drag curves correct to about 1%.

Another advantage of the Brinkman penalization is that the force F i acting on an
obstacle Oi can be found by simply integrating the penalization term over the volume
of the obstacle:

F i =
1
η

∫
Oi

(u + U −Uo) dx.(3.8)

Thus, the calculation of lift and drag on an obstacle can be made simply, accurately
and at low cost. This is helpful when calculating fluid–structure interaction, where
the force must be updated at each time step.

Although it is a very flexible and simple method, Brinkman penalization does
have two drawbacks. First, the large factor 1/η means that the term is stiff and must
be solved implicitly. This is not difficult since the penalization term is simply a mask
times the velocity. A stiffly stable time scheme for the penalized equations is described
in the following section. The second drawback is that since the penalized equations
are defined over the whole domain they must also be solved inside the obstacle. This
adds some extra computational work, but since the flow penetrates to a skin depth of
only O(η1/2) (Ref. [23]) there are few grid points inside the obstacle. The sparseness
of the grid inside the obstacle is clear in Fig. 5.1(b).

4. Time integration and Poisson solver. Our goal is to solve the following
system of equations describing coupled fluid–structure interaction

∂u

∂t
+ (u + U) · ∇u +∇P = ν∆u− 1

η
χ(xo)(u + U −Uo),(4.1)

∇ · u = 0,(4.2)

m
d2xo

dt2
+ b

dxo

dt
+ kxo = F (t),(4.3)

where the third equation models the motion of the obstacle’s centre of mass xo as
a damped harmonic oscillator forced by the fluid motion F (calculated using equa-
tion 3.8). The obstacle equation is integrated in time using second-order Adams–
Bashforth.

For the purposes of illustration, let us consider the first-order time integration
of the penalized Navier–Stokes equations (4.1-4.2) (in practice, we use the similar
second-order method mentioned at the end of this section). The time scheme is based
on a split-step where a non-solenoidal velocity field is calculated in the first step, and
is made divergence free using a pressure projection in the second step. To calculate
the velocity u(x, tn+1) ≡ un+1 given the velocity at the previous time step un we
first solve for the non-solenoidal velocity u∗

Lu∗ ≡
(

1
∆t

+
1
η
χ(xo)

)
u∗ + (un + U) · ∇u∗ + ν∆u∗ =

=
un

∆t
− 1
η
χ(xo)(U −Uo),(4.4)
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where L is a linear operator. Note that the Laplacian and penalization terms are
discretized implicitly (as these are stiff terms), while the advection term is discretized
semi-implicitly. The semi-implicit discretization allows the use of a fine grid in the
boundary layer, without having to use an unreasonably small time step because of the
CFL limit (we typically enforce a CFL criterion of one). The linear system (4.4) is
solved using the conjugate gradient method bi-cgstab [38]. Note that the vorticity
is correct after the first step: ωn+1 = ω∗ = ∇× u∗. Since the vorticity is correct at
this stage, we calculate the force using u∗ in (3.8). This avoids errors induced by the
slight smoothing at the boundary caused by correcting u∗ in the pressure projection
step below.

The presence of the Laplacian operator means that u∗ is differentiable after this
step, even though the penalization term is discontinuous [23]. If we did not use a split
step, the Poisson problem for the pressure would require taking the divergence of the
penalization term which would formally introduce δ-function singularities at the edge
of the obstacle. The split step method is thus a natural choice when using Brinkman
penalization.

In the second step we correct u∗ by making it divergence free using the following
pressure projection,

un+1 = u∗ −∆t∇Pn+1,(4.5)

where Pn+1 satisfies

∇ · ∇Pn+1 =
1

∆t
∇ · u∗.(4.6)

The combination of (4.5) and (4.6) ensures that the velocity at tn+1 is divergence-free,
i.e. ∇ ·un+1 = 0. All derivatives are calculated to 6th-order accuracy using wavelets
on the adapted grid, as described in §2.2. Because we use a collocation scheme, pres-
sure and velocity are given at the same grid points. This is the simplest method for
non-uniform grids, but it means that we have to be careful when solving (4.6). In par-
ticular, to avoid the odd-even decoupling instability associated with the non-staggered
grid we define the Laplacian operator as the inner product of a downwind gradient
operator and an upwind divergence operator. Griebel & Koster [19] independently
developed a similar upwind/downwind decomposition in their Galerkin approach for
the incompressible Navier–Stokes equations.

The Poisson equation (4.6) is solved using a multilevel method with V-cycles [9,
35]. The grids on multiple levels are provided by the adaptive wavelet multiresolution,
which produces a natural adaptive method for the Poisson equation. Wavelets are
also used to interpolate between the grids at multiple levels. This is the first time an
AWCM multilevel solver using second-generation wavelets has been developed, and it
is briefly described in the Appendix A, and fully in a publication in preparation [42].
Note that since it is based on the wavelet transform, the elliptic solver also has
complexity O(N ). An early AWCM using the Deslaurier–Dubuc interpolating bases
was proposed by Bertoluzza [6]; the AWGM has also been applied to solve problems
involving elliptic operators [10].

The split-step time scheme is stiffly stable, and can be solved with either periodic
or non-periodic boundary conditions. In the latter case, the consistent boundary
conditions for equation (4.6) are ∇P · n = u · n, where n is the outward normal
vector of the computational domain. The actual velocity boundary conditions used
are described in §5 below.
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In practice, we use a similar second-order time scheme which uses the second-order
backward difference formula for the time derivative and a suitable second-order semi-
implicit discretization of the convective term. To reduce the effect of the numerical
boundary layer at the edge of the computational domain when using non-periodic
boundary conditions we use the rotational form of the split-step method proposed by
Guermond & Shen [21].

The following section presents results for two-dimensional flow around fixed and
moving cylinders for 3 × 101 ≤ Re ≤ 105. The results are compared with other
numerical simulations, experimental results and the scaling of number of grid points
and computational complexity with Reynolds number is measured.

5. Results.

5.1. Scaling with Reynolds number. We begin with a series of simulations of
the impulsively started flow through a tightly packed cylinder array over a large range
of Reynolds numbers, 3×101 ≤ Re ≤ 105. To model a large array of cylinders (such as
found in the tube bundle of a heat exchanger) we consider one periodic cell where the
ratio of cylinder separation to diameter P/D = 1.5. The Reynolds number is defined
in the usual way as Re = UD/ν, where U = |U | is the imposed mean flow which is
at angle of 45◦ to the array. We ensure the boundary layer is fully resolved by setting
the smallest grid spacing ∆xmin = Re−1/2/6, i.e. six points across the boundary
layer or Taylor scale λ = Re−1/2. Note that in principle we do not need to limit the
maximum resolution (this is determined automatically by the threshold ε). We do so
here simply to conserve computational resources, since the smallest scales at the solid
boundary are associated with the penalization and are not physical. Each simulation
is performed until t = 1, by which time the boundary layer is completely formed
and trailing vortices begin to appear. The goal of this investigation is to determine
how N (number of active grid points), and overall complexity scale with Reynolds
number. We will verify the claim that adaptive wavelet techniques are well-suited to
calculating intermittent high Reynolds number flows.

Figure 5.1 shows the vorticity and adapted grid at Re = 104. The vorticity is
very smooth, and shows no sign of instability or Gibb’s oscillation associated with
the discontinuity at the surface of the obstacle. The grid is fine only in the thin
boundary layer of width λ ≈ Re−1/2 ≈ 0.01. For an L∞-error of 10−4 we require only
66 862 grid points out of a maximum of 8692, which corresponds to a compression
ratio of 12. In particular, there are few points in the interior of the cylinder beyond
the skin-depth of thickness about 0.05. This result demonstrates that our approach
gives smooth vorticity and a sparse grid even at relatively large Reynolds numbers.

It was claimed [16] that the wavelet-based CVS method should perform well at
high Reynolds numbers, because the wavelets would automatically concentrate the
grid points on the intermittent structures of the flow. Since turbulence becomes
increasingly intermittent at high Reynolds numbers, CVS should become increasingly
efficient as Reynolds number increases. We now check this claim by measuring how N
(number of active wavelets or grid points), compression ratio, time step and overall
computational complexity scale with Reynolds number. Figure 5.2 (a) shows that
the number of active grid points and the compression ratio scale like λ ∝ Re1/2,
while 5.2 (d) shows that computational complexity scales like Re. These results
support the original claim, since intermittency scales roughly like λ. Note that the
overall complexity of the wavelet calculation increases much more slowly than the
usual classical scaling estimate of Re9/4 for two-dimensional turbulence based on the
Kolmogorov scale, or Re3/2 based on λ. Furthermore, the scaling law is constant over
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(a) (b)

Fig. 5.1. Two-dimensional periodic cylinder array at Re = 104, t = 3.5. (a) Vorticity.
(b) Adapted grid.

five orders of magnitude. We might expect, however, that for Re > 106 (when the
boundary layer itself becomes turbulent) the scaling law may change. This will be
the subject of future investigation.

5.2. Fixed cylinder at Re = 100. We now consider the case of an isolated
cylinder in a large domain [−20, 40]× [−15, 15] (cylinder diameter D = 1). To mimic
an isolated cylinder we employ periodic boundary conditions in the spanwise direc-
tion, and decaying Robin boundary conditions at inflow (∂u/∂x = u) and outflow
(∂u/∂x = −u). We checked that increasing the spanwise dimension did not signifi-
cantly affect the results. To avoid instabilities associated with small fluctuations, we
use a uniform grid of resolution λ and width 1 at the inflow and outflow (this buffer
zone increases the number of grid points by less than 10%). The finest resolution is
∆x = λ/6, which corresponds to a finest grid of 3 584 × 1 792. As in the previous
section, the flow is started impulsively at t = 0. The step-size is chosen to satisfy a
CFL criterion of one.

Figure 5.3 shows the vorticity and grid at t = 150 when the von Karman vortex
street is well-established. Note that the grid follows the vortices as they are shed
downstream, and that vortices exit the computational domain cleanly with no re-
flection or distortion. The companion figures show a close-up of the vorticity and
computational grid. Again, the vorticity is smooth, and there are few points inside
the obstacle. The grid also coarsens quickly away from the boundary layer. The
following figure 5.4 shows that most points are near the Taylor scale, λ (within an
order of magnitude). This is an indication that λ is the most dynamically important
scale for this flow.

To get a better idea of how the adaptive wavelet algorithm distributes points
in position and scale we have plotted the grid at each scale in Fig. 5.5. This figure
clearly shows that the finest scales (λ/6) are only required in the boundary layer,
and that the grid gradually coarsens with the diffusion of vorticity as the vortices
move downstream. Figure 5.6 shows the evolution of compression as the von Karman
vortex street develops. Initially, the compression is very high, 470, before dropping
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Re
1/2

Fig. 5.2. Scaling for tightly packed cylinder array. (a) Number of active grid points. (b) Com-
pression ratio. (c) Time step. (d) Complexity compared with classical scaling based on the Kol-
mogorov scale η = Re−3/4 (which gives Re9/4 in two dimensions), and the Taylor scale λ (which
gives Re3/2 in two dimensions).

to a quasi-stationary level of about 270 when the vortex shedding is well developed.
The adaptive wavelet collocation code is about four times slower per grid point than
the fftw-based spectral code used in previous work [23], so a compression factor of
270 represents an acceleration of about 68 times compared with the spectral method.

Finally, in Fig. 5.7 we plot the lift and drag for the cylinder calculated using
(3.8). The average drag during the shedding phase is CD = 1.35 the lift amplitude is
CL = 0.27, and the Strouhal number is St = 0.168. Shiels et al. [34] used their highly-
accurate vortex to method to investigate the same flow and found CD = 1.33, CL =
0.3, and St = 0.167, which are close to the present results. Persillon & Braza [29] used
a finite-volume scheme, and found slightly different numbers: CD = 1.25, CL = 0.37,
and St = 0.164. Williamson’s [45] laboratory experiments give St = 0.164. Thus, the
present method gives results for fluid forces and vortex shedding frequency that are
consistent with other numerical and laboratory results.

5.3. Moving cylinder at Re = 100. We now modify the simulations of the
previous section by allowing the cylinder to move in response to fluid forces. We
model the interaction using the harmonic oscillator equation (4.3) with zero damp-
ing (b = 0), non-dimensional frequency k∗ = k/(1/2ρU2) = 8.74 and mass m∗ =
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Fig. 5.3. Two-dimensional fixed cylinder at Re = 100, t = 150. (a) Vorticity. (b) Adapted
grid. (c) Close-up of vorticity. (d) Close-up of grid.
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Fig. 5.4. Number of grid points as a function of grid size for fixed cylinder at Re = 100. The
grid size ∆x = Lx/(14× 2j−1) where j is the scale. Note that most grid points are near the Taylor
scale Re−1/2 = 0.1.

m/(1/2ρD2) − π/2 = 5 (π/2 is the normalized added-mass associated with the vol-
ume of fluid displaced by the cylinder). The parameters were chosen to match a
calculation performed by Shiels et al. [34]. The results in this section demonstrate
the flexibility of our combined adaptive wavelet collocation–Brinkman penalization
method: the cylinder can be moved by simply updating the mask function χ, without
the need for accelerating reference frames or expensive re-meshing. We find that it is
only slightly more expensive to calculate a moving cylinder than a fixed cylinder.

The vorticity and grid for the moving cylinder are presented in Fig. 5.8. Note
that the cylinder is in its upward phase, and that the grid has followed the movement
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Fig. 5.5. Computational grid at different scales 2−j . (a) j = 4, 2 224 points. (b) j = 5, 4836
points. (c) j = 6, 7 794 points. (d) j = 7, 2 977 points. (e) j = 8, 1810 points. (f) j = 9, 2 261
points.

of the cylinder as well as the advection of the vorticity. Figure 5.9 show lift, drag
and oscillation amplitude as a function of time. The oscillation amplitude A = 0.42,
lift amplitude CL = 0.81 and Strouhal frequency St = 0.189 are reasonably close to
Shiels et al.’s [34] vortex method values of A = 0.57, CL = 0.83, St = 0.194. However,
our average drag coefficient is much lower: CD = 1.74 compared to CD = 2.26. Since
the lift coefficients are very close (within 2.5%), it is possible that they may have
modified their definition of drag in the case of a moving cylinder.

This section has shown the usefulness of our method for investigating fluid–
structure interaction. The calculation of moving obstacles is just as simple and essen-
tially as fast as calculating fixed obstacles. It would be straightforward to apply the
method to different shapes or multiple moving obstacles by a suitable modification of
the mask function χ. One could similarly allow the obstacles to rotate or deform in
response to fluid forces.

5.4. Fixed cylinder Re = 3 000. Our final example is the impulsively started
flow around a cylinder at Re = 3000. This example shows the accuracy of our method
in calculating the singular start-up flow, and the sensitivity of our adaptive wavelet
collocation method to strong gradients in the flow. Since we are only interested in the
initial flow, we use doubly-periodic boundary conditions and a large domain of size
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Fig. 5.6. Compression for fixed cylinder at Re = 100 as a function of time. The average
compression ratio is about 274 (corresponding to 23 400 grid points) during the periodic shedding
regime.
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Fig. 5.7. Lift and drag for a fixed cylinder at Re = 100. Note that the average drag during the
shedding phase is CD = 1.35 and the Strouhal number is St = 0.168.

[−10, 10]×[−10, 10] with a maximum resolution of 6 1442 (which corresponds to λ/5.6).
We maintain a CFL criterion of 1, which gives a time step of about ∆t = 2× 10−3.

We show a close-up of the vorticity in Fig. 5.10. The vorticity field is very sim-
ilar to Koumoutsakos & Leonard’s [27] equivalent figure 21, and shows fine vortical
structure in the downstream boundary layer. The computational grid (not shown)
exhibits the same fine adaptivity of the other cases, with few points in the interior of
the cylinder.

In figure 5.11 we compare our drag curve with the short-time asymptotic result of
Bar-Lev & Yang [5] and the vortex method result of Koumoutsakos & Leonard [27].
The agreement is excellent, even during the early t−1/2 drag singularity. The close
match between the curves is especially interesting since the methods are entirely
different: Koumoutsakos & Leonard use a vortex method to resolve the vorticity
equation, while we use an adaptive high-order finite difference technique to resolve
the Navier–Stokes equations in velocity–pressure form. In their paper, Koumoutsakos
& Leonard show that previous efforts at simulating this flow were unable to capture
the short time singularity, or the plateau and peak shape between t = 1 to t = 2.

It is interesting to compare the number of computational elements used in the
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Fig. 5.8. Two-dimensional moving cylinder at Re = 100, t = 131. (a) Vorticity. (b) Adapted grid.
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Fig. 5.9. (a) Lift and drag for a moving cylinder at Re = 100. Note that the average drag
during the shedding phase is CD = 1.74, lift amplitude is CL = 0.81, and the Strouhal number is
St = 0.189. (b) Cylinder displacement as a function of time (amplitude A = 0.42).

wavelet and vortex methods. In our case these elements are wavelets, and in Koumout-
sakos & Leonard’s case they are vortices. At t = 3.0 we use 4.3 × 104 wavelets
(corresponding to a compression ratio of about 880 times), compared with 3.8× 105

vortices used in the vortex method (i.e. almost 9 times fewer computational ele-
ments). It therefore appears that the wavelet method is significantly more efficient
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Fig. 5.10. Vorticity field around a two-dimensional fixed cylinder at Re = 3000, t = 3.0.
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Fig. 5.11. Drag curve for the impulsively started cylinder at Re = 3000 compared to the short
time asymptotic result of Bar-Lev & Yang [5], and the vortex method results of Koumoutsakos &
Leonard [27].

(in terms of the number of computational elements) than the vortex method. We
must remember, however, that the computational cost could be higher per element
for wavelets than for vortices.

As mentioned in the introduction, we have found that the vorticity version of
Brinkman penalization gives inaccurate results for high Reynolds numbers, especially
at short times. This result has been confirmed for Re = 3 000, where the error at
t = 0.1 is 50%, whereas the primitive variables version presented in figure 5.11 is very
accurate for short times. We have also found that the primitive variables formulation
gives much more accurate results for the moving cylinder (with no need to smooth the
edge of the mask, as is necessary in the vorticity version). The only drawback of the
primitive variables formulation is that more grid points are necessary: typically 20-
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Fig. 5.12. Drag curve for the impulsively started cylinder at Re = 3000 comparing adaptive
wavelet methods using the vorticity and velocity formulations (on the smaller domain[32]) with the
short-time asymptotic result [5].

50% more. This increase is actually quite modest considering that vorticity is much
more compactly distributed than velocity. These results confirm the importance of
using the primitive variables formulation for high Reynolds number work.

Finally, we compare our results with those of Schneider & Farge [32]. They
use a Petrov–Galerkin scheme for spatial discretization along with vaguelette type
wavelets [17] to solve the penalized vorticity equations (i.e. the curl of 3.4). We
are interested in two aspects: the relative efficiency and accuracy of the present
primitive variables formulation compared with the vorticity formulation. We have
done two additional simulations using Schneider & Farge’s smaller periodic domain
([−2, 2]× [−2, 2]), and coarser grid of 5122 (i.e. λ/2.4). Both simulations use AWCM,
but one uses the present primitive variables formulation, and the other uses a vorticity
formulation [41]. These results are shown in figure 5.12.

At t = 3 our method uses 2.5 × 104 wavelets compared to 2.1 × 104 wavelets
for the vorticity-based vaguelette code (i.e. about 20% more). Note that because
we resolve a smoother field, we are able to use a larger ε = 10−4, compared with
their value of ε = 10−5. This result suggests that the primitive variables version of
the adaptive wavelet collocation code does not require many more wavelets than the
vorticity version, even though velocity is a much smoother quantity than vorticity.
The primitive variables version also produces more accurate results, as we see below.

Because the domain is rather small, we expect that the drag should be accurate
for short times only. While the primitive variables formulation agrees well with the
short time asymptotic curve of Bar-Lev & Yang [5], both vorticity simulations give
incorrect results (significantly over-predicting the drag). Note that differences between
our results and those of Schneider & Farge [32] at later times may be attributed to
the fact that they use a Petrov–Galerkin method with a fixed time step, and we use
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a collocation method with a variable time step Krylov method in time. These results
confirm our previous observations (referred to in §1) that the vorticity form of the
penalization method is inaccurate for Re > 103.

6. Conclusions. In this paper we have described a new method for calculat-
ing fluid–structure interaction at high Reynolds numbers. The method combines
Brinkman penalization (to define solid structures) with an adaptive wavelet colloca-
tion method (to dynamically adapt the computational grid) to solve the Navier–Stokes
equations. Note although the adapted grid is non-uniform, it is a subset of a struc-
tured (Cartesian) grid. Our method also employs a new adaptive wavelet collocation
multilevel elliptic solver [42] to solve the Poisson equation for pressure at each time
step. After describing each aspect of the method (in §2, §3, §4), we checked the ac-
curacy and efficiency of the method in calculating the two-dimensional flow around
cylinders in §5. A summary of the main conclusions follows.

A series of calculations for 3× 101 ≤ Re ≤ 105 demonstrated that the number of
active grid points N scales like Re1/2 ∼ λ (where λ is the Taylor scale, or boundary
layer thickness). The overall computational complexity (N/∆t) scales like Re. This
represents a significant improvement over the classical complexity estimate for two-
dimensional turbulence, N/∆t = Re9/4. The code achieves typical compression ratios
of between 270 and 1 000 times, compared with a uniform grid of the same resolution.
Since our method is about four times slower per grid point than a similar pseudo-
spectral method, this implies that our method is between 68 and 250 times faster than
the equivalent pseudo-spectral simulation. Note that these scaling results are simply
observations: we do not yet have a mathematical proof that the actual number of
degrees of freedom scales like Re1/2. It would be a fascinating if this scaling could be
proved mathematically.

The drag, lift and Strouhal frequency for an isolated fixed cylinder at Re = 102

were found to be within a few percent of experimental and numerical vortex method
results. We also did a calculation where the coupling between cylinder motion and
fluid flow is modelled as a forced harmonic oscillator. This case demonstrated the
flexibility of our method in allowing the obstacle to move relative to the grid, while
the grid automatically adapts to follow the movement. Our results for oscillation
amplitude, lift amplitude and Strouhal frequency are close to those of Shiels et al. [34]’s
vortex method, but their drag coefficient is much higher. The moving cylinder was
not significantly more expensive to calculate than the fixed cylinder (a slightly smaller
time step was required due to the motion of the cylinder).

Finally, we compared drag curve calculated for impulsively started flow around a
fixed cylinder at Re = 3000 with results from Koumoutsakos & Leonard [27]’s vortex
method and Bar-Lev & Yang’s [5] short time asymptotic solution. Our method’s drag
curve follows the t−1/2 asymptotic singularity at short times, and agrees closely with
the vortex method result at longer times. We also found that the adaptive wavelet
method uses about nine times fewer computational elements than the vortex method.
Comparison with the results of Schneider & Farge [32] confirms that the vorticity form
of the Brinkman penalization gives inaccurate drag results for moderate Reynolds
numbers (Re > 1 000).

The present method is extremely flexible, and can be adapted to a wide variety of
small and large Reynolds number flows with or without moving obstacles. Since the
method is based on collocation and penalization it is straightforward to extend from
two to three dimensions. We have recently extended our method to the calculation of
three-dimensional fluid-structure interaction. The method works well on a worksta-
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tion for maximum resolutions of up to about 2563, and we are currently working on
parallelization and an improved data structure to allow much larger problems to be
efficiently tackled. We will use the three-dimensional code to check the performance
of our method for classical homogeneous isotropic turbulence, where compression re-
lies entirely on turbulence’s natural intermittency, rather than the compact vorticity
distributions associated with fluid–structure interaction. Compressible flows are an-
other natural extension of the present method, and this is an area we are currently
investigating.

The CVS (adaptive wavelet method) presented here permits efficient and accurate
direct numerical simulation of flows in complex geometries for large Reynolds.

Acknowledgements. N. Kevlahan gratefully acknowledges financial support
from NSERC and the use of sharcnet’s computer facilities in carrying out calcula-
tions reported in this article. Partial support for the second author (O. V. Vasilyev
) was provided by the National Science Foundation under grants No. EAR-0242591
and ACI-0242457 and National Aeronautics and Space Administration under grant
No. NAG-1-02116. We are also grateful to M. Farge and K. Schneider for helpful
discussions on wavelet methods, and to J.-M. Ghidaglia for introducing NKRK to
Brinkman penalization.

Appendix. Multilevel Wavelet Collocation Elliptic Solver.
This appendix is a brief summary of the multilevel wavelet collocation algorithm

for the solution of linear elliptic problems Lu = f . Details of the algorithm and
convergence studies will appeared in the publication [42]. In the present paper the
algorithm is used to solve the Poisson equation for pressure (4.6), which ensures that
the velocity is incompressible.

The multilevel structure of the wavelet approximation provides a natural frame-
work to establish multilevel V-cycle iterations on an adaptive computational grid G≥.
We recall that the adaptive computational grid G≥ = GJ

≥ is constructed as a set of
nested adaptive computational grids Gj

≥ ⊂ G≥, such that Gj
≥ ⊂ Gj+1

≥ for any j < J−1,
where J is the finest level of resolution. This nested grid structure provides a frame-
work that allows the use of the approximation from coarser levels of resolution to
improve the approximation at the finest level.

The multilevel iterative algorithm is similar in spirit to multigrid methods [8],
but is very different in details of implementation. First, the structure of the nested
grids is different. In particular, in contrast to multi-grid methods, the lower level
grid is not necessarily coarser at every region of the domain. Secondly, a lower order
wavelet differentiation is used for the approximate solver (smoother). Thirdly, wavelet
interpolation is used for both prolongation and restriction operators. Finally, either
bi-cgstab [38] or gmres [31] is used as exact solver.

The pseudocode for the full local elliptic solver (without grid adaptation) is given
in Table A.1, where δε is the user-defined tolerance (which depends on the wavelet
tolerance ε), jmin and J are respectively the lowest and the highest levels of resolution,
ν1 and ν2 are respectively the number of pre- and post-relaxations, ν3 is the number
of iterations of exact solver, and Ij−1

w and Ij
w are respectively the restriction and

interpolation wavelet-based operators. In the numerical results presented in this paper
the same damping parameters have been used after each cycle. Finally the weighted
Jacobi second-order iterative solver was used as an approximate (i.e. smoothing)
solver. The weight for the weighted Jacobi method was set to the optimal theoretical
value of 2/3. Numerical experiments confirmed this weight to be optimal for adaptive
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while ‖fJ − LuJ
≥‖∞ > δε

rJ = fJ − LuJ
≥

for all levels j = J : −1 : jmin + 1
do ν1 steps of approximate solver for Lvj = rj

rj−1 = Ij−1
w

(
rj − Lvj

)
enddo

end
Solve for j = jmin level: Lvj = rj

for all levels j = jmin + 1 : +1 : J
vj = vj + Ij

wvj−1

do ν2 steps of approximate solver for Lvj = rj enddo
end
uJ
≥ = uJ

≥ + vJ

do ν3 steps of exact solver for LuJ = fJ enddo
end

Table A.1
Pseudocode for the multilevel wavelet collocation elliptic solver.

calculations as well.
It is important to note that special care should be taken in situations where the

elliptic operator is constructed as a product of two operators that are approximated
discretely, such as factoring the Laplacian operator as ∆ = div(grad) in this paper. In
this case the use of symmetric stencils for derivative operators would result in either
complete uncoupling of odd-even points, or, at best, a week coupling, which makes
it impossible to construct efficient iterative solvers. To make the operator better
conditioned and suitable for elliptic solver we found that simple strategy of making
one operator upwind-biased and another downwind-biased works well.
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