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In the paper we present an effective method to compute forces in external flows of
viscous incompressible fluids. It is an extension of the variational approach proposed
initially by Quartapelle and Napolitano (1983,AIAA J. 21, 911) and is particularly
well adapted to the case where a vortex method is used to solve the hydrodynamic
problem. The derived formula involves a harmonic functionη and a convenient
method for its determination is also shown. The effectiveness of the presented ap-
proach is confirmed by computational examples.c© 2000 Academic Press
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1. INTRODUCTION

Determination of forces is crucial in many physical and engineering problems encoun-
tered in fluid dynamics. In the present paper we are interested in an approach which is
particularly applicable when the fluid motion is determined using a vortex method. Below
we will consider the external viscous flow past a single body whose shape may evolve in
time. The flow domain will be denotedÄ and the boundary of the body∂Ä. In general we
will thus haveÄ=Ä(t) and∂Ä= ∂Ä(t); in the following, however the symbolt will be
dropped. We will restrict our attention to deformations which preserve the volume (the area
in the plane case) of the obstacle and in which the impermeability condition is satisfied. The
origin of the coordinate system will remain fixed at the obstacle. By definition, the force
which is acting on the body can be expressed in the following way,

F = FP+ Fµ = −
∮
∂Ä

(−pn+ ¯̄5µ · n) dσ, (1)
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whereFP andFµ represent the contributions of pressure and viscous force, respectively,p
is pressure,n is the unit normal (directed into the body) and̄̄5µ denotes the viscous stress
tensor. For the incompressible Newtonian fluid it is given by

¯̄5µ = µ[∇V + (∇V)T], (2)

with µ representing the viscosity of the fluid and∇V the velocity gradient, defined as
[∇V] i j = ∂Vi

∂xj
. Throughout the paper we assume viscosityµ to be constant everywhere.

Formula (1) combines two clearly distinct physical effects. On the one hand there is the
contribution of the viscous stresses¯̄5µ ·n, which are defined locally. This means that given
the velocity field, which is itself a non-local quantity, they can be obtained by computing the
velocity derivatives, and therefore the accuracy of this operation principally depends on the
resolution in the proximity of the boundary. On the other hand, pressurep is non-local
in that its value at a particular point depends on velocity and vorticity fields in the whole
flow domain. This makes evaluation ofFP more difficult, especially in the case of open
flow systems. Furthermore, application of formula (1) is particularly inconvenient when the
hydrodynamic problem is cast in terms of the non-primitive variables, i.e., the momentum
equation is expressed in the velocity–vorticity (or streamfunction–vorticity) rather than the
velocity–pressure form [2]. In this case pressure may only be obtained as a solution of a
separate problem [3]. Consequently, efficient computation of the pressure contribution to
the hydrodynamic force may in some cases cause problems. At the same time it is well
known that in many important flow configurations, e.g., bluff body wakes, its contribution
to the total force is dominating.

An alternative approach consists in using thevorticity impulserelation [4] and yields

F = − 1

D − 1

d

dt

∫
Ä

r × ω dÄ+ d

dt

∮
∂Ä

r × (n× V) dσ, (3)

wherer denotes the position vector andD is the spatial dimension (D= 2 or D= 3). In the
aboveÄ is the flow domain extending to infinity. This formula does not explicitly refer to
the pressure information. From the computational point of view it has, however, a number
of shortcomings. In the first place it involves numerical differentiation resulting in a noisy
signal, particularly when a low-order time stepping scheme is used. Furthermore, it has the
disadvantage that vorticity in the near and far wake contribute equally to the hydrodynamic
force [5]. This approach was recently revisited in [6] and [7], where the momentum balance
in some finite control volume (CV) surrounding the body was considered. A family of
relations was derived, all of them having the structure

F = − 1

D − 1

d

dt

∫
CV

r × ω dÄ+ {integral over the outer surface of the CV}

+ {integral over the body surface}. (4)

In this case, as well, time differentiation is required to compute force. Furthermore, using
the formulas (3) and (4), one is not able to separate the contributions of pressure and viscous
stresses, which might be desirable in some applications.

It is thus of much practical and theoretical importance to develop an approach which
will alleviate the above difficulties. We will extend the variational procedure originally
presented in [1] and derive a formula for the pressure force which does not refer to pressure
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information and uses only velocity and vorticity fields. Furthermore, it does not involve
time differentiation, apart from the time derivative of a boundary term. The latter, however
can be computed using the data prescribed in the statement of the problem. At the same
time, the contribution of vorticity to the force is taken with a weight diminishing with the
distance from the obstacle. In order to obtain the total force it will only be necessary to
supplement the term representing the viscous stresses.

2. HYDRODYNAMIC FORCE—VARIATIONAL APPROACH

In this section we will present the derivation of the formula that allows one to compute
the pressure force in a convenient manner. We will first transform the relation (1). To this
end we will use the identity of vector calculus∮

∂Ä

(∇V)T · n dσ =
∫
Ä

∇(∇ · V) dÄ, (5)

where [(∇V)T · n] i = ∂Vj

∂xi
n j (summation is implied when indices are repeated). The above

integrals vanish when the fieldV is divergence-free. This relation holds for any body with
shape changing in time. Using this property along with (1) and (2) one can show that the
well-known formula

F =
∮
∂Ä

[ pn− µ(∇V + (∇V)T) · n] dσ =
∮
∂Ä

[ pn− µ(∇V − (∇V)T) · n] dσ

=
∮
∂Ä

(pn+ µn× ω) dσ (6)

remains valid for any body with time dependent shape∂Ä= ∂Ä(t).
Following the idea originally presented in [1], we consider the regionÄ which is the

exterior of the body. It is bounded by two surfaces (curves in the plane case):00, which
coincides with the body surface, and01, which is the outer circumference. Now we define
the functionηx so that

4ηx = 0 inÄ

n · ∇ηx|00 = −ex · n (7)

n · ∇ηx|01 = 0,

whereex is the versor of the X-axis in the Cartesian coordinate system. The function
ηx is thus the solution of the Neumann problem for the Laplace equation. The solvability
condition is

∮
00

ex · n dσ = 0 and it is straightforward to verify that it is satisfied. The solution
is defined up to an additive constant, which will be adjusted below, and has the property
that for large distancesr it behaves likeO( 1

r ) in 2D andO( 1
r 2 ) in 3D. The functionηx will

be used to determine the X-component of the pressure forceFP. In order to obtain the other
components (FP

y andFP
z ), the corresponding functionsηy andηz will have to be introduced.

They are defined by a problem similar to (7) with the boundary condition on00 replaced
by−ey · n and−ez · n, accordingly. In the following considerations we will focus on the
drag forceFx. First we express the pressure term−∇ p using the Navier–Stokes equation
(with densityρ set equal to unity)

−∇ p = ∂V
∂t
+ (V · ∇)V + µ∇ × ω. (8)
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It is then projected (in the sense of the Hilbert spaceL2 (Ä)) on the gradient∇ηx. Each
term in Eq. (8) is multiplied by∇ηx and then integrated overÄ. Integrating by parts, using
the incompressibility constraint and the boundary conditions forηx we obtain [1]

FP
x =

∮
00

(nx p) dσ =
∮
00∪01

ηxn ·
(
∂V
∂t

)
dσ + µ

∮
00∪01

n · (ω ×∇ηx) dσ

+
∫
Ä

∇ηx · [(V · ∇)V] dÄ, (9)

wherenx = ex · n. Note that even though the above relation represents the pressure force,
one of the boundary terms involves viscosity. In this work we consider general boundary
shapes, including those with geometric singularities (i.e., corners). In that case the unit
normal vector may be discontinuous, with its value at singular points equal to the mean of
the two limits. This is, however, not a problem, since (7) can be solved in the weak sense,
whereas in all the remaining casesn appears in integrand expressions.

For the sake of simplicity we will now restrict ourselves to the two-dimensional (2D) case;
the extension to 3D is, however, straightforward. We will therefore use the termcontour
instead ofbodyand denoteω=ωz (all the remaining vorticity components vanish). In order
to further simplify the relation we introduce the following assumptions:

• place the outer perimeter01 at infinity (01 → 0∞); consequently, at infinityηx falls
off to a constant which will be set equal to zero,
• assume that for any finite time 0< t <∞ vorticity vanishes at infinity like

ω∼ e−r 2
; this is true for all the flows in which the initial vorticity has compact support, as

in finite time advection cannot take vorticity to infinity and the above asymptotic formula
is consistent with the properties of the diffusion equation (this category comprises all the
flows of interest),
• in the 2D case assume that the difference between velocity and the free

stream ‖V−V∞‖ decays at infinity like O( 1
r 2 ); this assumption implies that∫

Ä
ω dÄ+ ∮

00
V · t dσ = 0 and that there is no net circulation in the flow domain, and

in fact this is a necessary constraint on plane flows, since otherwise the part of the kinetic
energy associated with vortical motion of the fluid would not be finite [8].

It must be observed that none of the above assumptions is restrictive. In the derivation below
we will exploit the asymptotic properties of integrals taken over the contour0∞. Here we
remark that such integrals vanish when their integrand expressions decay likeO( 1

r 2+ε ) with
ε >0. It is now possible to carry out further simplifications. The non-linear term in (9)
transforms as follows:∫

Ä

∇ηx · [(V · ∇)V] dÄ =
∫
Ä

∇ηx ·
[
∇ V2

2
− V × ωk

]
dÄ

=
∫
Ä

∇ ·
(

V2

2
∇ηx

)
dÄ−

∫
Ä

∇ηx · (V × ωk) dÄ

=
∮
00

(n · ∇ηx)
V2

2
dσ +

∮
0∞
(n · ∇ηx)

V2

2
dσ −

∫
Ä

∇ηx · (V × ωk) dÄ

=−
∮
00

nx
V2

2
dσ −

∫
Ä

∇ηx · (V × ωk) dÄ. (10)
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The integral over0∞ vanishes due to the external boundary conditions forn ·∇ηx (Eq. (7)).
In Eq. (9) there are two integrals that are taken over the outer perimeter. The one involving
the viscous term(µ

∮
0∞

n · (ω × ∇ηx) dσ) vanishes because of the rapid decay ofω and
ηx at infinity. The other one can be transformed using the asymptotic representation for the
velocity field far from the obstacle,

V = V∞(t)+ c(t)
r 2
+ O

(
1

r 3

)
, (11)

which is consistent with the third assumption introduced above. The term in question now
becomes∮

0∞
n ·
(
∂V
∂t

)
ηx dσ = du∞

dt

∮
0∞

nxηx dσ + dv∞
dt

∮
0∞

nyηx dσ + O

(
1

r 2

)
. (12)

The derivativesdu∞
dt and dv∞

dt represent the accelerations of the free stream components
V∞= [u∞; v∞] and thus correspond to the added mass effect (in fact, this effect is also
represented by the analogous term taken on the contour00). In the next section we will derive
closed formulas for the integrals

∮
0∞

nxηx dσ and
∮
0∞

nyηx dσ . As a result the pressure drag
force is given by

FP
x = −

∫
Ä

∇ηx · (V × ωk) dÄ+ µ
∮
00

∇ηx · (n× ωk) dσ +
∮
00

n ·
(
∂V
∂t

)
ηx dσ

−
∮
00

nx
V2

2
dσ + du∞

dt

∮
0∞

nxηx dσ + dv∞
dt

∮
0∞

nyηx dσ. (13)

We can now supplement the contribution of the viscous stressesFµ
x =µex ·

∮
00

n×ωk dσ ,
which can be collapsed into the first boundary term and we finally obtain the expression for
the total drag force,

Fx = −
∫
Ä

∇ηx · (V × ωk) dÄ+ µ
∮
00

(n× ωk) · (∇ηx + ex) dσ +
∮
00

n ·
(
∂V
∂t

)
ηx dσ

−
∮
00

nx
V2

2
dσ + du∞

dt

∮
0∞

nxηx dσ + dv∞
dt

∮
0∞

nyηx dσ. (14)

As opposed to the standard approaches discussed in the Introduction, the derived formula
does not involve time differentiation of the field quantities, except for the time derivative of
the boundary velocity. The latter is, however, the boundary condition for the Navier–Stokes
system and as such does not have to be calculated separately. Furthermore, the integrand
expression in the area integral in (14) is multiplied by the weighing factor∇ηx, which decays
like O( 1

r 2 ). Consequently, the contribution of the vorticity far downstream is much smaller
than that of the vorticity in the near wake. These are important computational advantages
over the formulas (3) and (4). In some particular cases the formula (14) may be further
simplified. For example, the term involving the time derivative of the boundary velocity
vanishes when the contour has circular symmetry, or when there is no angular acceleration.
In the case of solid body rotation the fourth term can be transformed using the Green’s
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theorem

∮
00

nx
V2

2
dσ =

∮
00

nx
ϕ̇2r 2

2
dσ = ϕ̇2

2

∮
00

nx(x
2+ y2) dσ

(15)
ϕ̇2

2

∫
A

∂

∂x
(x2+ y2) d A= ϕ̇2

∫
A

x d A,

where A stands for the area of the contour andϕ̇ is the rotational velocity. This implies
that the term vanishes when the contour rotates about its center of mass, for the X and
Y directions, respectively. As a result, when the obstacle is a fixed cylinder, or a rotating
circular cylinder, then the formula (14) consists of the first two integrals only plus the terms
corresponding to the free stream acceleration.

3. DETERMINATION OF THE FUNCTION ηx

To take advantage of formulas (13) and (14) it is necessary to compute the function
gradient∇ηx (correspondingly∇ηy) in the domainÄ and the value both ofηx and of its
gradient∇ηx on the boundary∂Ä. As the solution of an external Neumann problem (7),
the functionηx can be obtained in a number of different ways. In the following we will
describe a method which is particularly suitable when the velocity and vorticity fields are
computed using a vortex approach. In that case the area integral in (14) simply reduces to
a quadrature over the vorticity carriers (vortex blobs), their number being relatively high
(O(105–106)). At every instant of time it will therefore be necessary to evaluate∇ηx at a
different set of points corresponding to the locations of the vortex blobs with ever increasing
distance from the obstacle. Thus standard techniques based on an a priori evaluation of
ηx and∇ηx on a fixed grid inÄ are inconvenient. We will now present an alternative
approach.

In the flow domainÄ the harmonic functionηx can be represented using Green’s formula.
In the 2D case it takes the form

ηx(X) = 1

2π

∮
∂Ä

ηx(Q)
cos(nQ,XQ)
|XQ| dσ − 1

2π

∮
∂Ä

(n · ∇ηx) ln|XQ| dσ
X ∈ Ä, Q∈ ∂Ä. (16)

The integrals in the above formula are taken over the contour boundary. The functionηx(Q)
can be obtained using the boundary integral equation

ηx(P)+ 1

π

∮
∂Ä

ηx(Q)
cos(nQ,PQ)
|PQ| dσ = 1

π

∮
∂Ä

(n ·∇ηx) ln|PQ| dσ P, Q∈ ∂Ä. (17)

This is the Fredholm equation of the second kind and can be solved using standard tech-
niques. The integrand expression on the right hand side in (17) can be evaluated using
the boundary condition from (7). In order to extend this approach to the spatial case,
the corresponding 3D versions of the kernel functions have to be substituted into (16)
and (17). The gradient∇ηx can be calculated by applying integration by parts to the for-
mula (16),
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FIG. 1. Schematic division of the computational domain intoÄint andÄext.

∇ηx(X) = 1

2π

∮
∂Ä

ηx(Q)
nQ − 2q cos(nQ,XQ)

|XQ|2 dσ + 1

2π

∮
∂Ä

(n · ∇ηx)
XQ
|XQ|2 dσ,

X ∈ Ä, Q ∈ ∂Ä, (18)

whereq= XQ
|XQ| . Using vortex methods, the above formula has to be independently evaluated

for every single vorticity carrier, i.e., as many asO(105–106) times at every time step. This
is computationally intensive and therefore application of (18) is not convenient, especially
far from the contour where the variation of the functionηx is fairly slow.

To avoid this we will use a hybrid approach. We introduce a circle C (a sphere in the 3D
case) with the diameterDC significantly larger then the characteristic dimension of the ob-
stacle. As shown in Fig. 1, the computational domain is thus split into two (Äint ∪Äext=Ä):

• the interior annular regionÄint between the obstacle and the circle C; in this domain
the functionηx varies fairly rapidly and the solution of the Neumann problem (7) is obtained
using a finite element method (FEM) on a refined mesh,
• the regionÄext external to the circle C where the functionηx is varying fairly slowly;

the functionηx is represented there as a Laurent series with rapidly decaying coefficients;
the expansion is determined by matching the two solutions on the circle C.

Consequently, evaluation ofηx or∇ηx requires only either interpolation from the fixed grid
(in the case ofX ∈Äint), or summation of the power series with a small number of terms
(in the case ofX ∈Äext). Even though there is some overhead cost related to the solution of
the problem inÄint and then determining the expansion coefficients inÄext, the presented
method results in significant speed-up comparing with the approach based on formulas (16)
and (18). Furthermore, it should be remarked that when the contour does not change in
time, the overhead calculations are performed once for all. Details for the solutions of the
problem inÄint andÄext are given below.

3.1. Solution of the Internal Problem

The Neumann problem in the regionÄint can be solved using, for example, the weak for-
mulation. The boundary condition on00 follows from (7), whereas the boundary condition
on C can be generated using the formula (18). This, however, requires that the additional
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boundary value problem (17) be solved beforehand. Nevertheless, in certain implementa-
tions of the vortex method (e.g., [9]), an analogous problem has to be solved in order to
determine the potential component of the velocity field. Consequently, in these two steps
the same inverse matrix can be used, resulting in significant reduction of the overhead cost
related to matrix inversion. As mentioned above, the solution of an external Neumann prob-
lem is defined up to an additive constant. Below we will show how to fix this constant so
that the solution will correspond to the functionηx vanishing at infinity.

3.2. Solution of the External Problem

In the exteriorÄext of the circle C the harmonic functionηx can be represented as the
Laurent series

ηx(x, y) = <
( ∞∑

k=0

ak

zk

)
=
∞∑

k=0

(
RC

r

)k

[αk cos(kϕ)+ βk sin(kϕ)], (19)

wherez= x + iy (i is the imaginary unit),RC is the radius of the circle C,(r, ϕ) are the
polar coordinates of the point(x, y), and< denotes the real part of a complex number. The
numbers{αk, βk}∞k=0 are the expansion coefficients. They can be determined by performing
spectral (in terms of Fourier harmonics) analysis of the functionηx(R, ϕ)= η̃x(ϕ) computed
on the circle C. In this evaluation the solution inÄint can be used.

We will now adjust the indeterminate constant that appears in the solution of the Neumann
problem. It is equal to the zeroth term in the expansion (19),

α0 =
∫ 2π

0
η̃x(ϕ

′) dϕ′, (20)

and is subtracted from the final solution. In fact the expansion coefficients decay very rapidly
and only a small numberN of terms have to be retained to ensure the desired accuracy. In
the 3D case the functionηx is expanded in terms of spherical harmonicsPk

l (cos(θ)),

ηx(x, y, z) =
∞∑

k,l=0

γkl P
k
l (cos(θ))eikϕ

(
RC

r

)l+1

, (21)

where(r, θ, ϕ) are the spherical coordinates of the point(x, y, z). As before, the expan-
sion coefficients are determined by performing spherical harmonic analysis. The additional
condition is also similar:

γ0,0 =
∫ 2π

0

∫ π

0
ηx(θ

′, ϕ′) sin(θ ′) dθ ′ dϕ′. (22)

Using the representation (19) for the functionηx we are now able to evaluate the integrals
in (12),∮

0∞
nxη dσ = lim

r→∞

∫ 2π

0
cos(ϕ)η(ϕ)r dϕ

= lim
r→∞

[
RC

∫ 2π

0
cos(ϕ)

α1 cos(ϕ)+ β1 sin(ϕ)

r
r dϕ + O

(
1

r

)]
= πRCα1, (23)
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whereηx or ηy should be substituted forη. Only the term corresponding tok= 1 has a
non-vanishing contribution to the integral.

4. EXAMPLE CALCULATIONS

In this section we present computational examples concerning the determination of the
functionsηx andηy, and subsequent evaluation of the hydrodynamic force for some simple
flow configurations. In the simplest case, when the obstacle is a circular cylinder, the solution
is available in the analytical form. It is straightforward to verify that thenηx(r, θ)= R2

0
cos(θ)

r ,

ηy(r, θ)= R2
0

sin(θ)
r , and∇ηx(r, θ)=− R2

0
r 2 [cos(2θ), sin(2θ)]T, ∇ηy(r, θ) = − R2

0
r 2 [sin(2θ),

−cos(2θ)]T. These relations can be used to verify the accuracy of the algorithm which is
implemented to calculate the functionη.

One should observe that when the contour rotates without any change of shape, deter-
mination ofηx andηy can be considerably simplified. Rotation of the contour by the angle
α implies that in the local frame of reference, denotedXαOYα, the global frameX OY is
rotated by the angle−α (Fig. 2). Let the superscriptα denote quantities referred to the local
(i.e., rotated) frame of reference and 0 those expressed in the fixed frame. The boundary
conditions for the problem (7) represent the projectionsn0

x andn0
y of the unit normaln on

the axesX andY of the global reference system for the case ofηx andηy, respectively. Since
the contour does not deform, the corresponding projectionsnαx andnαy remain unchanged,
and so do the solutionsηαx andηαy in the local coordinate system. The projectionsn0

x andn0
y

can therefore be expressed in terms ofnαx andnαy in the following way:

n0
x = nαx cos(α)+ nαy sin(α)

(24)
n0

y = −nαx sin(α)+ nαy cos(α).

FIG. 2. Representation of the boundary condition for the problem (7) in the fixed (solid line) and rotated
(dashed line) frames of reference.
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FIG. 3. Isolines of the functionηx (a) andηy (b) for the case of the square cylinder.

Consequently, using linearity of the Neumann problem with respect to the boundary con-
ditions, the functionsη0

x andη0
y can be represented as

η0
x = aηαx − bηαy

(25)
η0

y = bηαx + aηαy ,
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FIG. 4. The amplitudes of the coefficientsγk=
√
α2

k + β2
k the expansion (19) as a function of the indexk for

the case of the square cylinder (they are the same for bothηx andηy).

wherea= cos(α) and b=−sin(α). These are the functions that should be used in the
relations (9) through (14). Consequently, for any rotation angleα, the solutionsη0

x andη0
y

can be recovered as a linear combination of the reference solutionsηαx andηαy with the
coefficients depending on the rotation angle. This significantly reduces the overhead cost
in the situation where the contour rotates as a solid body.

In Fig. 3 we show the isolines ofηx andηy for the case of the square cylinder. The
circle C has the radiusRC= 3L

2 , whereL is the characteristic dimension of the obstacle.
The internal problem was solved using a second-order accurate finite element method with
roughly 16,000 elements. In the computation of the external solutionN= 64 terms were
used. In Fig. 4 we present the log–log plots of the magnitudes of the expansion coefficients
γk =

√
α2

k + β2
k as a function of the wavenumberk (the plots are the same for bothηx and

ηy). Note the rapid decay of the coefficients.
Since in this work we are mainly concerned with the derivation of an efficient formula

for the pressure force, we begin the presentation of our results with the time evolution of

the pressure drag and pressure lift coefficients, defined ascP
D = FP

x /
U2
∞L
2 andcP

L = FP
y /

U2
∞L
2 ,

respectively. They were computed for the 2D wake flow past a square cylinder (Figs. 5a and
6a). The Reynolds number Re= U∞L

ν
was equal to 1000. In Figs. 7a and 8a we show the same

parameters obtained in the case when the obstacle was rotating with the normalized angular
velocity ϕ̇L

U∞
= 0.5. For the purpose of verification the coefficientscP

D andcP
L presented in

Figs. 5a through 8a were computed using two different methods: (i) the formula (13) and
(ii) integration of the pressure distribution on the contour. All the simulations were per-
formed using the random vortex blob method described in [9] with the number of vorticity
carriers being on the order of 105. Pressure on the contour was determined using a finite
element method to solve the weak form of Eq. (8). The solution method is described in [3].
In Figs. 5b through 8b we show the time evolution of the total drag and lift coefficients

for the same flow configurations. Again the coefficientscD= Fx/
U2
∞L
2 andcL = Fy/

U2
∞L
2

are computed in two different ways: (i) by applying formula (14), and (ii) by using the



FIG. 5. Time histories of the pressure drag (top) and the total drag (bottom) coefficientscP
D andcD for the

wake flow past a square cylinder at Re= 1000. The coefficients are computed using different methods (see insets).

FIG. 6. Time histories of the pressure lift (top) and the total lift (bottom) coefficientscP
L andcL for the wake

flow past a square cylinder at Re= 1000. The coefficients are computed using different methods (see insets).
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FIG. 7. Time histories of the pressure drag (top) and the total drag (bottom) coefficientscP
D andcD for the

wake flow past a rotating square cylinder at Re= 1000 and the normalized rotational velocityϕ̇L
U∞ = 0.5. The

coefficients are computed using different methods (see insets).

impulse relation (3). Because of noise, the signals had to be artificially smoothed, which
was done by performing running averages over 15 adjacent samples in all cases. Neverthe-
less, the signals obtained using the impulse formula (3) still remain irregular, thus implying
a much higher level of noise.

As a first remark one should mention the very good agreement between the pressure
and the total lift coefficientscP

L and cL obtained using different methods in both flow
configurations (Figs. 6 and 8). The agreement is slightly worse as regards the total drag
cD (Figs. 5b and 7b). The reason for this is the effect of the viscous forceFµ, which
contributes to the drag force while having no net effect on the lift. Consequently, evaluation
of the former depends on the details of the boundary layer, which may have not been
sufficiently resolved in the simulations. The impulse formula (3) does not explicitly refer
to the boundary layer information, and therefore the discrepancies observed in Figs. 5b
and 7b may be attributed to the inaccuracy related to evaluation ofFµ. This conclusion
is also confirmed by the good agreement obtained for the pressure drag coefficientscP

D

(Figs. 5a and 7a). The irregular behavior of the pressure drag coefficientcP
D computed using

the pressure surface distribution may be caused by the finite domain effects involved in
its determination. As already remarked, pressure is computed using a grid-based solver,
and the effect of the vorticity which is outside the computational domain is represented by
suitable boundary terms. The influence that truncation of the computational domain may
have on the calculated force was discussed in [7]. Finally, it should be stressed that in all
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FIG. 8. Time histories of the pressure lift (top) and the total lift (bottom) coefficientscP
L andcL for the wake

flow past a rotating square cylinder at Re= 1000 and the normalized rotational velocityϕ̇L
U∞ = 0.5. The coefficients

are computed using different methods (see insets).

the cases the proposed formulas (13) and (14) resulted in signals which were much more
regular than those obtained by the other methods.

5. CONCLUSIONS

In the present paper we have derived an efficient formula for the computation of the
pressure forces in hydrodynamics. It is a variational approach based on velocity and vorticity
fields and is therefore particularly well suited for the case when a vortex method is used
to solve the flow problem. The total force can be recovered by supplementing the viscous
term Fµ. Our formula is robust and comparing to the standard techniques based on (3)
exhibits a number of computational advantages. In the first place it does not involve time
differentiation which means that good results may be obtained with low order time stepping
schemes. Additionally, the contribution of vorticity diminishes with the distance from the
obstacle which is due to the presence of the factor∇η decaying likeO( 1

r 2 ). As a result, the
loss of accuracy related to particle merging or core spreading performed far downstream
in certain implementations of the vortex method (e.g., [5]) will not significantly influence
the computation of forces. Within the new approach it is required that a family of the
harmonic functionsη should be available. They are the solutions of the Neumann problem
for the Laplace equation and as such can be readily computed. A convenient method for
their evaluation is also proposed. The formula (14) has however the disadvantage that it
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involves the boundary value of vorticity. Consequently, the obtained results may depend on
the details of boundary layer resolution, particularly for the drag force.
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